OUTLINE PROOF — MAXIMUM LIKELIHOOD METHOD

The likelihood is the probability of observing a particular dataset, therefore
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differentiate RH term with respect to 6 again
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Let t be an unbiased estimator of some function of 6, say 7(#), then
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therefore from above
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Use Schwarz inequality on 7 2 to generate
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Therefore, for the case 7(0) = 6
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MALMQUIST BIAS

(also known as Eddington bias)

...... or Eddington’s solution of Fredholm’s integral equation of 1st kind
F(z) = /U(::r;—z) K(z) dz
Expand the LH integral argument to give
Uix—2) = Ulx) — Ula) z + U'(x) = — ...
Integrate term by term
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where u,, are moments of integration kernel K. Now rewrite
U(z) = F(z)+ Y A, F™(x)
For a central Kernel (ie. y; = 0) and equating coefficients
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For a Gaussian kernel jiogq = 0, 1o = 02, 1y = 30, ... therefore
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and for say a luminosity function of the form eg. N(m) = 10%(m=mo)
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