WORKED EXAMPLES

For a series of quasar spectra, model the number of LLS as no. per unit

redshift f(z) = N,(1+ 2)”, find the MLE for N, and ~.

For each quasar there is a maximum redshift z,,,, for detection of a LLS,
which we can take to be the redshift of the quasar z.,, and a minimum
redshift z,,;, for which LLS are observable. This latter redshift either corre-
sponds to the blue cutoff of the quasar spectrum z,,;,0ps Or to a higher redshift

LLS cutting out the flux ie. 2., = max{zminobs, s -

In(L) —2{/2”“”“ dz}+zm[<i>1

Zming

in(L)= ¥

£ (0 E Y, aa)

— r}/ Zminj

Note the general form for likelihood problems such as this usually involves
a normalising constant 1 (ie. no. per unit “volume” of parameter space).

Explicitly write the ML model for the predicted distribution as n ®(f) then

In(L) = Y in(Ly) = =3 [n®(6); o+ 3 inly (@)
din(L) _




You have two data frames taken on different nights at almost the same ori-

entation and position and with almost the same pixel scale, and you want to

match the coordinate systems, (z’,vy") (z,y), prior to combining them.
¥=ax + by + c = acosbx + asinfly + c
y=dx +ey + f = —asinlx + acosby + f

Pair up the objects from the frames {x},y/} <« {x;,y;} solve using linear

least-squares.

The Information matrix for [a, b, ¢] in this case is given by
i xpfof i xmyi/o] X 4i/o)

I = < |'S aqwyifo? i y2)o? > yifor | >

i xifo? > yifo? i 1/07

For a random distribution of N points 0 < z; < L,; 0 <y; < Ly; 0 =0
1/3 L2 1/4 L,L, 1/2 L,
1/4 L,L, 1/3L; 1/21L,
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LIKELIHOOD & CONFIDENCE INTERVALS

Interval estimation — find range 6, < 6 < 6, which contains true value 6,
with probability &, or alternatively has probability a = 1 — (3 of lying outside

the range.

Confidence interval = error of the parameter 6

For example, 1-D Gaussian parameter error distribution

+1o 3 =68.3%, for £20 B =95.5%

In particular Maximum Likelihood estimators lead to this type of parameter

error distribution for large N and/or exponential family PDFs — eg. in 1-D

InL(Z | 1) = const — > (z; — p) /207
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Now consider a 2-D Gaussian parameter error distribution what is the equiv-

alent confidence interval for +po errors ?

First normalise the distribution to N(0,1) form on both axes

b= %/Sw /Sy e T2 dady = /Op re "1 dr

Hence 8 =1—e /2 and 1o — 8 = 39.3%, for 20 — 3 =86.5%

To cover 68.3% and 95.5% interval requires 1.520 and 2.490 77



To generalise to many parameters, note CLT = distribution multivariate

Gaussian for likelihood estimator for large N

Defined by mean vector # and covariance matrix C

1

P(0) = (2m)m/2 | C |12
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The corresponding confidence interval for normalised o is

1

g = 2m/2-1(m /2 —

i | xmte X ax

INVARIANCE OF ML ESTIMATE

e if 0 is ML estimate then 7(6) is also

only one function 7(#) will be unbiased for finite N

= transform [in principle] any-shaped InL to parabolic shape

transform method exact only to O(5;) since experimental likelihood is

made normal not theoretical distribution

interval obtained is central in transformed variable not original

multiple maxima cause problems



HYPOTHESIS TESTING

Often set up two possible hypotheses, Hy — the null hypothesis, usually for-
mulated to be rejected; and H; the alternative, or reseach hypothesis — simple

or composite

Reject H) if test yields value of statistic whose probability of occurrence under

Hyis < a = the level of significance.

When Hj is true:
Type I error = P(rejection of Hy) = «
When Hj is false:
Type 11 error = P(failure to reject Hy) =
Power = P(rejection Hy) =1 — (3

Problem = form of the sampling distribution of the test—statistic

Parametric tests eg. Students’ t, Fisher F, y? assume: normally distributed

populations; observations independent; measured on a viable scale

Non-parametric tests make fewer assumptions concerning data; underlying
distribution can be unknown; small sample size; cope with measures such as

ranks; can treat multiple population types — lack of power in special cases.



NEYMAN-PEARSON LEMMA

In hypothesis testing minimise a type II error (failure to reject hypothesis)
by choosing the boundary of the acceptance region such that

S . L(X|Hy)
likelihood ratio = ——~ = (),
L(X|Hy)

If w, represents some enclosed “volume” of the data space
Power = 1—-0 = / L(X|61) dX

to find the region w, that maximises 1 — [ consider

_ L(X161) __ L(X]6)
1=0 = . Ty “XI00) X =< 755>

Therefore the best critical region w, consists of points having the largest

values of L(X|01)/L(X|0y) ie. > C,

e simple hypotheses have fixed parameters postulated prior to the exper-

iment and lead to exact distributions for the test statistic

e composite hypotheses use a continous family of parameters but since the
pdf of the likelihood is the same form can compare eg. s parameters -v-
r parameters, but involve correction factors ~ 1 +a/N + O(1/N?) since

estimate the parameters from the data

e for composite hypotheses belonging to separate families the above ap-
plies but also have to construct a comprehensive parametric family eg.
Af(X|0)+ (1 —N)g(X|w) and test this -v- one or other of the individual
hypotheses



SUMMARY OF HYPOTHESIS TESTS

Parametric tests — see for example Kendall & Stuart “Advanced Theory Of

Statistics”

Non-parametric — best bet is Siegel & Castellan “Non-parametric Statistics

for the Behavioral Sciences”

e Student’s t — observed mean consistent with theoretical value ?
e Fisher’s F-test — compares variances of two distributions

e Correlation coefficient — are two or more variables correlated ?

e Pearson x? — used for comparing general distributions/models

e Likelihood ratio — general use in hypothesis testing Hy -v- H;

e Mann-Whitney U — general comparison of distributions

e Cramer-Smirnov-von Mises — general comparison of distributions
e Kolmogorov-Smirnov (KS) — general comparison of distributions
e Spearman (+Kendall) rank correlation coefficent — correlation 7

e Monte Carlo methods — lots of CPU test for almost anything



SPEARMAN RANK CORRELATION COEFFICIENT

Are two sets of variables correlated 7
Rank observations {z;} and {y;} separately noting paired order

The usual Pearson correlation coefficient for mean—corrected x,y is

2Ty

VEai syl

For ranks
Y =NN+1)/2  Yai=NN+1)(2N +1)/6

:>Z($Z—.fz)2 = (NB—N)/12

Construct the following using d = x — y (mean—corrected)

re=3 a0 + 3yl = 2 di /2 Yy

7

re=1-6>d}/(N°~N) —1<r,<1
For N > 10
N —2
t =g
1 —r2

is distributed as Students’ t with N — 2 degrees of freedom, which in turn is

distributed as N(0,1) as N >> 1.



PEARSON’S CHI-SQUARE TEST

Test on binned data and as such is distribution—free from original

Hy: the proportion of “objects” in each bin is that “expected” from either a

model or the presumed population.

The chi—square statistic is

with n — 1 degrees of freedom.

The modified chi-square E; — O; is not P(x?).

Choose bin size by redefining ordinate such that probability content of bins

~ same.

Advantages: easy to understand, model testing is for free since can vary the
model parameters to turn testing to model fitting.

Disadvantages: binning loses power, unstable for < 5 counts per bin.

Note that for model fitting m parameters on naturally sampled (binned) data

n samples then

= >(di —mi)*/o}

)

<xX’*>=n-m var{x*} = 2(n —m)

then known as the Goodness-of-FIT (GoF) test.



NEYMAN-PEARSON TEST

....... otherwise known as the likelihood ratio test.

Can either be two competing hypotheses Hy -v- H; or goodness — of —
fit testing Hy -v- everything (eg. parameter estimation, number of model

parameters....)
_ L(data | Hy)
~ L(data | Hy)

Suppose Hy has r free parameters fit from data and H; has s free parameters
where s > r, then in the asymptotic limit of large N —2In()) is distributed
as x2_, to O(1/N)

< 2lnA)>=(s—r)(1+—=+.....)

Note that for model fitting with Gaussian errors the above is exact for all N
since

—2In(\) = x; — X;
This gives a simple recipe for deciding if extra parameters are “necessary”

X?Lferl - Xifm x% distribution

Xor-mi1— Xa
— ”_m+; (N —m —1)  Students't
anm



