
WORKED EXAMPLES

For a series of quasar spectra, model the number of LLS as no. per unit

redshift f(z) = No(1 + z)γ, find the MLE for No and γ.

For each quasar there is a maximum redshift zmax for detection of a LLS,

which we can take to be the redshift of the quasar zem, and a minimum

redshift zmin for which LLS are observable. This latter redshift either corre-

sponds to the blue cutoff of the quasar spectrum zminobs or to a higher redshift

LLS cutting out the flux ie. zmin = max{zminobs, zlls}.

ln(L) = −
n

∑

j=1

{
∫ zmaxj

zminj

f(z) dz} +
m
∑

i=1

ln [f(zi)]

ln(L) =
n

∑

j=1

No

1 − γ
[(1 + z)−γ+1]zmaxj

zminj
+

m
∑

i=1

ln [No (1 + zi)
−γ]

Note the general form for likelihood problems such as this usually involves

a normalising constant η (ie. no. per unit “volume” of parameter space).

Explicitly write the ML model for the predicted distribution as η Φ(θ) then
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You have two data frames taken on different nights at almost the same ori-

entation and position and with almost the same pixel scale, and you want to

match the coordinate systems, (x′, y′) (x, y), prior to combining them.

x′ = a x + b y + c ≡ a cosθ x + a sinθ y + c

y′ = d x + e y + f ≡ −a sinθ x + a cosθ y + f

Pair up the objects from the frames {x′i, y
′
i} ↔ {xi, yi} solve using linear

least-squares.

The Information matrix for [a, b, c] in this case is given by

I = <
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For a random distribution of N points 0 < xi < Lx; 0 < yi < Ly; σi = σ

V = I−1 =
σ2

N











































1/3 L2
x 1/4 LxLy 1/2 Lx

1/4 LxLy 1/3 L2
y 1/2 Ly

1/2 Lx 1/2 Ly 1











































−1



LIKELIHOOD & CONFIDENCE INTERVALS

Interval estimation → find range θa ≤ θ ≤ θb which contains true value θo

with probability β, or alternatively has probability α = 1−β of lying outside

the range.

Confidence interval ≡ error of the parameter θ

For example, 1-D Gaussian parameter error distribution

±1σ β = 68.3%, for ±2σ β =95.5%

In particular Maximum Likelihood estimators lead to this type of parameter

error distribution for large N and/or exponential family PDFs – eg. in 1-D

lnL(x̄ | µ) = const−
∑

i

(xi − µ)/2σ2
i

σi = σ lnL = const− (µ− x̄)2/
2σ2

N

Now consider a 2-D Gaussian parameter error distribution what is the equiv-

alent confidence interval for ±pσ errors ?

First normalise the distribution to N(0,1) form on both axes

β =
1

2π

∫

sx

∫

sy

e−(x2+y2)/2 dxdy =
∫ p

0
re−r2/2 dr

Hence β = 1 − e−p2/2 and 1σ → β = 39.3%, for 2σ → β =86.5%

To cover 68.3% and 95.5% interval requires 1.52σ and 2.49σ ??



To generalise to many parameters, note CLT ⇒ distribution multivariate

Gaussian for likelihood estimator for large N

Defined by mean vector θ and covariance matrix C

P (θ̂) =
1

(2π)m/2 | C |1/2
exp−

1

2
(θ̂ − θ)τC−1(θ̂ − θ)

The corresponding confidence interval for normalised σ is

β =
1

2m/2−1(m/2 − 1)!

∫ p

0
Xm−1e−X2/2dX

INVARIANCE OF ML ESTIMATE

• if θ̂ is ML estimate then τ(θ̂) is also

• only one function τ(θ) will be unbiased for finite N

• ⇒ transform [in principle] any-shaped lnL to parabolic shape

• transform method exact only to O( 1
N ) since experimental likelihood is

made normal not theoretical distribution

• interval obtained is central in transformed variable not original

• multiple maxima cause problems



HYPOTHESIS TESTING

Often set up two possible hypotheses, H0 – the null hypothesis, usually for-

mulated to be rejected; and H1 the alternative, or reseach hypothesis – simple

or composite

RejectH0 if test yields value of statistic whose probability of occurrence under

H0 is ≤ α = the level of significance.

When H0 is true:

Type I error = P (rejection of H0) = α

When H0 is false:

Type II error = P (failure to reject H0) = β

Power = P (rejection H0) = 1 − β

Problem = form of the sampling distribution of the test–statistic

Parametric tests eg. Students’ t, Fisher F, χ2 assume: normally distributed

populations; observations independent; measured on a viable scale

Non-parametric tests make fewer assumptions concerning data; underlying

distribution can be unknown; small sample size; cope with measures such as

ranks; can treat multiple population types – lack of power in special cases.



NEYMAN-PEARSON LEMMA

In hypothesis testing minimise a type II error (failure to reject hypothesis)

by choosing the boundary of the acceptance region such that

likelihood ratio =
L(X|H1)

L(X|H0)
= Cα

If wα represents some enclosed “volume” of the data space

Power = 1 − β =
∫

wα

L(X|θ1) dX

to find the region wα that maximises 1 − β consider

1 − β =
∫

wα

L(X|θ1)

L(X|θ0)
L(X|θ0) dX = <

L(X|θ1)

L(X|θ0)
>

Therefore the best critical region wα consists of points having the largest

values of L(X|θ1)/L(X|θ0) ie. ≥ Cα

• simple hypotheses have fixed parameters postulated prior to the exper-

iment and lead to exact distributions for the test statistic

• composite hypotheses use a continous family of parameters but since the

pdf of the likelihood is the same form can compare eg. s parameters -v-

r parameters, but involve correction factors ≈ 1 + a/N +O(1/N 2) since

estimate the parameters from the data

• for composite hypotheses belonging to separate families the above ap-

plies but also have to construct a comprehensive parametric family eg.

λf(X|θ) + (1−λ)g(X|ψ) and test this -v- one or other of the individual

hypotheses



SUMMARY OF HYPOTHESIS TESTS

Parametric tests – see for example Kendall & Stuart “Advanced Theory Of

Statistics”

Non-parametric – best bet is Siegel & Castellan “Non-parametric Statistics

for the Behavioral Sciences”

• Student’s t – observed mean consistent with theoretical value ?

• Fisher’s F-test – compares variances of two distributions

• Correlation coefficient – are two or more variables correlated ?

• Pearson χ2 – used for comparing general distributions/models

• Likelihood ratio – general use in hypothesis testing H0 -v- H1

• Mann-Whitney U – general comparison of distributions

• Cramer-Smirnov-von Mises – general comparison of distributions

• Kolmogorov-Smirnov (KS) – general comparison of distributions

• Spearman (+Kendall) rank correlation coefficent – correlation ?

• Monte Carlo methods – lots of CPU test for almost anything



SPEARMAN RANK CORRELATION COEFFICIENT

Are two sets of variables correlated ?

Rank observations {xi} and {yi} separately noting paired order

The usual Pearson correlation coefficient for mean–corrected x, y is

r =

∑

xiyi
√

∑

x2
i

∑

y2
i

For ranks

∑

i

xi = N(N + 1)/2
∑

i

x2
i = N(N + 1)(2N + 1)/6

⇒
∑

i

(xi − x̄i)
2 = (N 3 −N)/12

Construct the following using d = x− y (mean–corrected)

rs =
∑

i

x2
i +

∑

i

y2
i −

∑

i

d2
i/2

√

∑

x2
i

∑

y2
i

rs = 1 − 6
∑

i

d2
i/(N

3 −N) − 1 ≤ rs ≤ 1

For N ≥ 10

t = rs

√

√

√

√

N − 2

1 − r2
s

is distributed as Students’ t with N − 2 degrees of freedom, which in turn is

distributed as N(0,1) as N >> 1.



PEARSON’S CHI-SQUARE TEST

Test on binned data and as such is distribution–free from original

H0: the proportion of “objects” in each bin is that “expected” from either a

model or the presumed population.

The chi–square statistic is

χ2 =
n

∑

i=1

(Oi − Ei)
2

Ei

with n− 1 degrees of freedom.

The modified chi–square Ei → Oi is not P (χ2).

Choose bin size by redefining ordinate such that probability content of bins

≈ same.

Advantages: easy to understand, model testing is for free since can vary the

model parameters to turn testing to model fitting.

Disadvantages: binning loses power, unstable for ≤ 5 counts per bin.

Note that for model fitting m parameters on naturally sampled (binned) data

n samples then

χ2
n−m =

∑

i

(di −mi)
2/σ2

i

< χ2 >= n−m var{χ2} = 2(n−m)

then known as the Goodness-of-FIT (GoF) test.



NEYMAN-PEARSON TEST

.......otherwise known as the likelihood ratio test.

Can either be two competing hypotheses H0 -v- H1 or goodness − of −

fit testing H0 -v- everything (eg. parameter estimation, number of model

parameters....)

λ =
L(data | H0)

L(data | H1)

Suppose H0 has r free parameters fit from data and H1 has s free parameters

where s > r, then in the asymptotic limit of large N −2ln(λ) is distributed

as χ2
s−r to O(1/N)

< −2ln(λ) >= (s− r)(1 +
a

N
+ .....)

Note that for model fitting with Gaussian errors the above is exact for all N

since

−2ln(λ) = χ2
s − χ2

r

This gives a simple recipe for deciding if extra parameters are “necessary”

χ2
n−m+1 − χ2

n−m χ2
1 distribution

t2 =
χ2

n−m+1 − χ2
n−m

χ2
n−m

(N −m− 1) Students′t


