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ABSTRACT

The structure of the Sagittarius stream in the Southern Galactic hemisphere is analysed with the
Sloan Digital Sky Survey Data Release 8. Parallel to the Sagittarius tidal track, but ∼ 10◦ away,
there is another fainter and more metal-poor stream. We provide evidence that the two streams
follow similar distance gradients but have distinct morphological properties and stellar populations.
The brighter stream is broader, contains more metal-rich stars and has a richer colour-magnitude
diagram with multiple turn-offs and a prominent red clump as compared to the fainter stream. Based
on the structural properties and the stellar population mix, the stream configuration is similar to the
Northern “bifurcation”. In the region of the South Galactic Cap, there is overlapping tidal debris from
the Cetus Stream, which crosses the Sagittarius stream. Using both photometric and spectroscopic
data, we show that the blue straggler population belongs mainly to Sagittarius and the blue horizontal
branch stars belong mainly to the Cetus stream in this confused location in the halo.
Subject headings: galaxies: dwarf – galaxies: individual (Sagittarius) – Local Group

1. INTRODUCTION

The Milky Way has clearly not finished assembling, as
the two Magellanic Clouds are coalescing into the Galaxy.
As stochastic satellite infall continues in the Galactic
halo, it gives us a chance to bootstrap our cosmological
theories of structure formation to the local observables.
By measuring the signatures of accretion of galactic frag-
ments – manifested in streams of stripped gas and stars
– onto the Milky Way, we can study the Galaxy’s under-
lying matter distribution.

Of the Galactic satellites surviving to date, the Sagit-
tarius (Sgr) dwarf galaxy is one of the most massive,
third after the LMC and SMC (e.g. Niederste-Ostholt et
al. 2010). It is however, not going to survive for much
longer. After its discovery by Ibata et al. (1994), it was
quickly realized that the Sgr dwarf was losing its stars
to the Galactic tides at a high rate (e.g. Johnston et
al. 1995; Lynden-Bell & Lynden-Bell 1995; Mateo et al.
1996). It was only when most of the sky was imaged by
the 2MASS and the SDSS surveys that the amount of
damage done to Sgr became really apparent (e.g. New-
berg et al. 2002; Majewski et al. 2003). Currently, it is
established that the stellar debris torn from the dwarf
wraps around the Galaxy at least once, i.e. leading and
trailing tails can be each seen covering over π radians
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on the sky (Majewski et al. 2003; Belokurov et al. 2006).
Hundreds of stars in the Sgr tails have their radial veloci-
ties measured and some of these also have reliable chemi-
cal abundances (Majewski et al. 2004; Yanny et al. 2009).
A number of star clusters are believed to have originated
in Sgr and are now left floating in the Milky Way halo
after having been torn from the crumbling galaxy (e.g.
Law & Majewski 2010b).

Unfortunately, the unbound stars (and star clusters)
are not simply tagged according to their past Sgr mem-
bership. Instead, objects are typically classified as such
based on their proximity to the Sgr orbital plane as
judged by their position on the sky, sometimes comple-
mented by distances, possibly even with the help of radial
velocities. Based on this seemingly reasonable proposi-
tion, everything in and around the Sgr orbital plane is
attributed to the dwarf, leading to the present rather
confused state of affairs!

This has led to a situation in which the data on the
Sgr stream have now become too complex to model. The
Virgo Over-density (Jurić et al. 2008) and the “bifurca-
tion” of the leading tail (Belokurov et al. 2006) are both
examples of stellar halo substructures that lie close to
the Sgr plane. After the initial attempts to include these
in the picture of Sgr disruption (e.g Fellhauer et al. 2006;
Mart́ınez-Delgado et al. 2007; Peñarrubia et al. 2010), it
now seems that no real progress has been made to pro-
vide a concise theory of their existence. Finally, another
stream (the Cetus stream) on a polar orbit has recently
been announced to overlap with Sgr debris in the South-
ern Galactic hemisphere by Newberg et al. (2009). Is the
Cetus stream related to Sgr as well?

This is the first of two observational papers in which we
report new insights into the formation of the Sgr stream
and its neighbouring stellar halo substructures. In a com-
panion paper, we use the multi-epoch observations of Sgr
stars in Stripe 82 to measure the proper motion of the
stream for the first time. Here, we revisit the photomet-
ric data previously available from the Sloan Digital Sky
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Fig. 1.— Density of MSTO stars with 0 < g−i < 0.7 and 19.5 < i < 22 from the SDSS DR8 on the sky in different coordinate systems.
The top panel shows the map in right ascension and declination, the middle panel in Galactic coordinates, while the bottom in a coordinate
system (Λ,B) aligned with the orbit of Sagittarius, as defined in Majewski et al. (2003). Several stellar streams are clearly visible, the
most prominent of which is the one originating from the Sgr dSph. The Sgr stream dominating the area around North Galactic Cap has
been seen in the previous SDSS data releases. While some pieces of the southern stream have been revealed before, the new data traces
the southern part of it in glorious continuity. Similarly to the tail in the North, the tail in the South appears to have a fainter extension at
one side (at higher B). The present location of Sgr dwarf is marked by a red star. The dashed red line is the projection of the Sgr orbital
plane, as defined in Majewski et al. (2003), and the blue dotted line shows the outline of the comparison field as discussed in the text.

Survey (SDSS) (Fukugita et al. 1996; Gunn et al. 1998,
2006; York et al. 2000) archives as well as new measure-
ments made public as part of the new Data Release 8
(DR8)(Aihara et al. 2011; Eisenstein et al. 2011). Cru-
cially, this dataset now includes significant coverage of
the southern Galactic hemisphere not available to Be-
lokurov et al. (2006).

The paper is arranged as follows. We extend the ‘Field
of Streams’ plot (Belokurov et al. 2006) to the south in
Section 2. This shows immediately that the Sgr stream –
in the somewhat misleading nomenclature of our earlier
paper – is bifurcated. Everywhere we look, in both the
south and the north, there is evidence for what appears
to be two streams. In Section 3, we use starcounts and

Hess diagrams (Hess 1924) to characterise the density
profiles and stellar populations of the streams. Where
the streams cross Stripe 82, we can take advantage of the
coadded photometry (Annis et al. 2006), which reaches
∼ 2 magnitudes deeper than the single epoch SDSS mea-
surements. We use photometric metallicities to demon-
strate that the two streams have different chemical prop-
erties. Untangling the substructure is considerably com-
plicated by the existence of a further stream, already
noticed by Newberg et al. (2009) and dubbed the Cetus
stream. This is studied in Section 4 using blue straggler
(BS) and blue horizontal branch (BHBs) stars.

2. THE STELLAR HALO IN THE SOUTH
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Fig. 2.— Left: Density of MSTO stars (with the same color-magnitude selection as for Figure 1) across the Sgr stream in the south
(90◦ < Λ < 120◦) (solid line) and the density of 2MASS M giants in the same region (dotted line). A constant background has been
subtracted from the histograms. Right panel: The density of MSTO stars in different slices across the stream from 70◦ < Λ < 80◦ to
110◦ < Λ < 120◦. Although the secondary stream seems to have the same offset from the main stream at different Λ, this is not actually
the case as shown in Figure 3.
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Fig. 3.— Full lines show the centers of the bright and faint
streams as a function of longitude Λ as determined by a double
Gaussian fit to the profile of Figure 2. The dashed lines show the
σ widths of the streams, whilst the dotted lines show the extrap-
olation of the streams’ centroids on approach to the Sgr remnant,
which is marked by the red star.

To study substructure in the Galactic stellar halo, we
select old and moderately metal-poor stars with the sim-
ple color and magnitude cuts 0 < g − i < 0.7 and

19.5 < i < 22. According to model isochrones, (e.g.,
Girardi et al. 2004), our sample is dominated by the
Main Sequence turn-off (MSTO) stars with metallicity
Z . 0.02 and absolute magnitude 3 . Mi . 6, occupy-
ing the range of heliocentric distances 10 . D(kpc) . 60.

The density of ∼ 13,000,000 stars that passed the above
color and magnitude cuts in the SDSS DR8 dataset is
shown in Figure 1 in equatorial and Galactic coordinates
as well as in the coordinate system approximately aligned
with Sgr orbit. The arc of the Sgr tail – note the two
distinct streams, or branches A and B in the notation
of Belokurov et al. (2006) – is clearly visible in the area
around the North Galactic Cap (NGC), as has been seen
in the previous SDSS data releases. Also visible in the
north are the Orphan Stream and the Monocerus struc-
ture crossing the branches of the Sgr. DR8 reveals a
large continuous portion of the Sgr tail in the Southern
Galactic hemisphere. Curiously, this tail too is seem-
ingly accompanied by another fainter stream following
it at slightly higher declination. In fact this is not the
first sighting of this structure. Watkins et al. (2009)
showed that the density slice through the Sgr stream in
the southern Stripe 82 contains at least two maxima.

It is useful to define a heliocentric coordinate sys-
tem aligned with the Sgr stream. Such coordinate sys-
tems, whose equator aligns with the stream, have al-
ready proved useful in similar studies (e.g. Koposov et
al. 2010). Using the notation of Majewski et al. (2003),
we introduce coordinates (Λ, B) given by their eqn (9).
The equator of this spherical cooordinate system coin-
cides with the Sgr debris midplane. The bottom panel
of Figure 1 shows the data in this coordinate system,
with the Sgr debris now straddling the equator. This
reveals that, in the new projection, rather than a “bifur-
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Fig. 4.— Background subtracted Hess diagram of the Sgr stream
in the area defined by 100◦ < Λ < 110◦ and −5◦ < B < 15◦. The
background has been obtained from the symmetric area relative
to the Galactic plane (which is marked by the blue dotted lines
in Figure 1). Multiple stellar evolutionary phases are clearly seen:
MSTO, subgiants, red giant branch, blue stragglers and BHBs at
i ∼ 18.2. The curvy black region at bright magnitudes (i . 19,
g − i & 0.5) is caused by the imperfections of the background
subtraction. On top of that problematic region, the red clump is
located (i ∼ 17.5).
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Fig. 5.— Measurement of distances and distance gradients along
the stream using two different tracers: sub-giant branch stars and
red clump stars. Left: 2D-histogram of red clump tar counts
as a function of longitude along the stream Λ and i-band mag-
nitude. The distance gradient is clearly visible. Right: similar
2D-histogram for sub-giant stars, selected using a combination of
g−i and g−r colors. The exact same gradient as for the red clump
is clearly visible. The red line on both panels shows the distance
gradient of 0.023 mag deg−1 (offset for clarity).

cation” of the Sgr stream (the somewhat misleading term
introduced in Belokurov et al. 2006), the stellar density
appears resolved into two, sometimes superposed, inde-
pendent streams with seemingly different angular widths
and density profiles.

We are led to the conclusion that everywhere where the
Sgr tidal debris can be detected there exist at least one
additional density component following or over-lapping
the Sgr stream. In what follows, we will attempt to em-
pirically describe and untangle these structures by exam-
ining their density profiles, distances and chemical abun-
dances.

3. THE SGR STREAM IN THE SOUTH

3.1. Starcounts

We begin by quantifying the difference in the centroids,
widths and density profiles of the streams visible in the
South Galactic Region. The left panel of Figure 2 shows
the density of MSTO stars across the stream in the region
(90◦ < Λ < 120◦). For comparison, we also show the
density of M giants extracted from the 2 Micron All-Sky
Survey (2MASS, see e.g., Majewski et al 2003) using the
cuts from Majewski et al. (2003), namely J −Ks > 0.85,
0.22 < J − H − 0.561 (J − Ks) < 0.36, 10 < Ks < 12.
Both profiles show clear evidence for bimodality, though
it is unclear whether the two structures are distinct or
overlapping. The right panel of Figure 2 shows cross-
sections across the stream in different slices. As we march
along the stream, at least in the region 90◦ < Λ < 120◦,
the cross-section remains quite invariant, but the offset
of the secondary stream from the main stream changes
gently with longitude.

Let us assume that the one-dimensional profile of each
stream is a Gaussian whose centroid and full width at
half maximum may vary with longitude. This simple
model of the stellar density in a tidal stream is of course
not completely physical, but nevertheless should be suf-
ficient to describe the pieces of the streams in the south.
We now extract the centroids and widths by fitting two
Gaussians to the starcount data. Figure 3 shows their
behavior as a function of longitude Λ along the stream.
Perhaps unsurprisingly, the tracks of the centers of two
streams are not exactly parallel, but they are slightly
converging. Nonetheless, it is surprising that the conver-
gence point is not close to the Sgr remnant (marked as a
red star). This gap decrease along the stream is already
a broad hint that the the two structures seen in Figure 2
are separate streams following similar but slightly dif-
ferent orbital paths, as opposed to a single stream with
substructure.

Although Belokurov et al. (2006) used the term “bifur-
cation” to describe the Sgr stream in the north, the new
data and analysis suggests that the term is misleading –
rather, in both the north and the south, the stellar den-
sity appears to be resolved into two independent streams
with different angular widths.

3.2. Color Magnitude Diagrams and Distance
Gradients

Distances to many different parts of the Sgr stream
have been measured in the past using various stellar trac-
ers: Carbon stars (e.g. Totten & Irwin 1998), BHBs (e.g.
Yanny et al. 2000; Newberg et al. 2003), sub-giant branch
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Fig. 6.— Hess diagrams determined separately for the main Southern (−5 < B < 3) and the secondary Southern streams (8 < B < 12).
In both cases, the Hess diagrams are corrected for the distance gradient of 0.023 mag deg−1. We have marked the red clump (RC) and
blue straggler (BS) populations apparent in the brighter of the streams.
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stars (e.g. Belokurov et al. 2006), red-clump stars (e.g.
Correnti et al. 2010) and RR Lyrae variables (e.g. Prior
et al. 2009; Watkins et al. 2009). However, when com-
bined to provide as continuous a coverage of the stream
as possible, the results of these methods do not always
appear to be fully consistent. Distances to the stream in
the south still rely on the exhaustive study of M giants
extracted from the 2MASS dataset (e.g. Majewski et al.
2003).

Here, we will rely on the SDSS photometric data and
concentrate on the area in the Southern Galactic hemi-
sphere where the stream is imaged contiguously. Our aim
is to construct clean Hess diagrams of the two streams
so as to analyse their stellar populations. Distances, or
more accurately, relative distances along the stream are
needed. If uncorrected for distance gradients, the fea-
tures in our Hess diagrams lose sharpness. Here, we will
use red clump and subgiant stars as distance indicators.

To construct the Hess diagrams, we make use of the
fact that the Galaxy is, to a good approximation, sym-
metric about the Galactic plane. In Figure 4, we show
the Hess diagram of the Sgr streams in the range 100◦ <
Λ < 110◦ and −5◦ < B < 5◦. We have subtracted
the equivalent patch mirrored with respect to the Galac-
tic plane as a proxy for the background region. It is
marked by the blue dotted lines in Figure 1. The exis-
tence of multiple stellar populations is immediately ap-
parent from the richness and thickness of the features in
the Hess diagram. We can identify a fattened MSTO,
subgiant and red giant branches, as well as populations
of BHBs and BSs. Nonetheless, our background subtrac-
tion is not perfect and is the cause of some the graininess
in the figure, especially at brighter magnitudes. This is
particularly troublesome in the region of the red clump
stars.

Some of the blurring and thickening of features is of
course due to the fact that the heliocentric distance is
changing along the streams. Our next step is to measure
the distance gradient, which we quantify by studying two
different tracer populations in Figure 4. We select red
clump stars by the colour cut (c.f. Correnti et al. 2010)

0.8 < g−i < 0.95. (1)

With a little more effort, we can select subgiant stars
using the a linear combination of g−i and g−r colors,
namely

0.45 < 0.628 (g−i) + 0.529 (g−r)− 0.028 < 0.55. (2)

For both populations, we show 2D histograms of i band
magnitude versus longitude along the stream Λ in Fig-
ure 5. We see that the gradient is linear to an excellent
approximation, and reassuringly the same for both pop-
ulations. In this area of sky, the longitudinal gradient is
∼0.023 mag deg−1.

Having identified the relative distances of populations
along the stream, we can correct for the gradient and
obtain cleaner Hess diagrams, as shown in Figure 6.
Here, the left panel refers to the brighter stream (−5◦ <
B < 3◦), while the right panel to the fainter stream
(8◦ < B < 12◦). It is noticeable that the Hess dia-
gram of the fainter stream shows much thinner sub-giant
and red-branch regions. Furthermore, it does not pos-
sess multiple turn-offs and a prominent red-clump like
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of objects coming from two structures: BS from Sgr stream with
the same distance gradient as the subgiants/red clump (shown as
an offset red line), and BHBs from Cetus stream with an opposite
distance gradient at g ≈ 18 and 80◦ . Λ . 120◦.

the brighter southern stream. This suggests the exis-
tence of a simpler and more metal-poor population in
the fainter stream, and more complex and more metal-
rich population in the brighter stream.

We can confirm this result by making use of the Stripe
82 data. Stripe 82 has multi-band and multi-epoch imag-
ing, which Annis et al. (2006) exploited to build a cata-
logue that reaches ∼ 2 magnitudes deeper than the single
epoch SDSS measurements. We compute photometric
metallicities using the formula provided by Bond et al.
(2010) and report the results in Figure 7 both for Stripe
82 (left panel) with 19 < r < 21.5 and for the Sgr streams
in the north between 205◦ < Λ < 240◦ with 19 < r < 21.
Since Stripe 82 crosses the Sgr streams at a significant
angle, it is important to understand that the left part
of the plot corresponds to the Λ ∼ 110◦ region while the
right corresponds to Λ ∼ 50◦, which is much closer to the
Sgr progenitor. Despite this limitation, Figure7 shows
clearly that the brighter stream has significant numbers
of high metallicity stars, while the secondary stream has
hardly any.

4. THE CETUS AND SGR STREAMS

Whilst the picture so far is reasonably clear-cut, com-
plications emerge when we study the bluer populations,
particularly the BHB and BS stars. Of course, there is a
long history of use of BHB stars for studying structure in
the stellar halo. The stars are relatively abundant, and
they occupy a narrow absolute magnitude range, which
makes them valuable distance indicators. However, there
has been a slight confusion as to the absolute magnitude
of a typical BHB star in the SDSS filter system: for ex-
ample Yanny et al. (2000) and Niederste-Ostholt et al.
(2010) have used Mg = 0.7, while Newberg et al. (2009)
advocate the use of Mg = 0.5. Fortunately, we do not
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−10◦ < B < 20◦. The velocity of Cetus stream stars in the Galactic rest frame is between −100 and −50 km s−1, while Sgr stars have
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need to address this issue here, as we will use only rela-
tive distances.

Guided by the photometric properties of the globular
cluster BHBs studied by An et al. (2008), we choose to
use the following simple color cuts to select candidate
BHB stars in the SDSS data: 0.9 < u−g < 1.3,−0.35 <
g−r < 0.0. At higher values of g−r, the contamination
from main sequence stars increases sharply. Of course,
this color selection also identifies out the BS stars as
well (Yanny et al. 2000). We therefore might expect that
the density distribution along the distance axis typically
shows two enhancements corresponding to BHB and BS
stars separated by ∼ 2 magnitudes. Note that the BHBs
have a narrow band of intrinsic luminosities and so gener-
ate tight structures, whereas the BSs are poorer distance
indicators and produce more diffuse structures (see e.g.,
Figure 4 of Deason et al. 2011).

Figure 8 shows the density of stars satisfying our colour
cut as a function of apparent magnitude and longitude.

There are indeed two evident structures present, but they
do not correspond to two roughly parallel density peaks
which might be naturally interpreted as BS and BHBs
from the same structure. Rather the figure forces upon
us the interpretation that there are two classes of objects
arising from two distinct structures: the thick structure
possesses the same longitudinal distance gradient as the
subgiant and red clump stars, and this can be identified
with BSs from the Sgr stream. The other, thinner struc-
ture has the opposite distance gradient, and we shall see
that these are BHB stars lying in an entirely different
structure, namely the Cetus stream.

The discovery of the Cetus stream was announced by
Newberg et al. (2009). They noticed a stream-like over-
density in low metallicity stars in SDSS DR7 that crosses
the Sgr stream in the south at b ∼ −70◦. The Cetus
stream can be distinguished from the Sgr on the ba-
sis of its markedly lower ratio of BS to BHB stars and
its different kinematics. They also suggested that some
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BHB stars previously attributed to the Sgr stream in-
stead properly belong to the Cetus stream.

In the middle panel of Figure 9, we display the density
distribution of stars on the sky satisfying the color cuts
−0.3 < g−r < 0 and 0.9 < u−g < 1.35 together with
18.5 < g < 20. The magnitude cut ensures that these
stars are primarily BSs, and they do indeed align with
the Sgr stream along B ≈ 0◦ (following the MSTO dis-
tribution showed on the left panel of Figure 9). There
is, however, some patchiness in the stellar distribution;
this seems to be associated with granularity in the ex-
tinction. We show the extinction map of Schlegel et al.
(1998) in the right panel of Figure 9, and there is indeed
an anomalous patch of high extinction along the path of
the stream at Λ ≈ 85◦, B ≈ 5◦.

The spatial distribution of the Cetus stars in Figure 8
is not easy to understand as the coordinate system is
aligned with the Sgr orbit. To reconstruct the orientation
of Cetus, we first select the BHBs in the range 17 < g <
18.5 and 80◦ < Λ < 130◦ and −5◦ < B < 30◦. We find
the direction of the stream by fitting a Gaussian to their
magnitudes, allowing the center of the Gaussian to vary
linearly with Λ and B. The fit yields the magnitude of
the BHBs as

g = −0.0112 (Λ−100)− 0.0064 B+18.08. (3)

together with the width of the Gaussian as 0.1 mag.
This allows us to refine our selection of Cetus candidate
members, as shown in the left panel of Figure 10. The
arrow shows our measured distance gradient of Cetus
BHBs, which should lie roughly along the extension of
the stream. Despite low number statistics, the stream
is clearly visible and is at significant angle to the Sgr
stream. To confirm the orientation of the stream, the
middle panel shows the distance modulus of BHBs as
a function of angular distance along the Cetus stream.
This angular distance has been derived as longitude in
the rotated coordinate system with the pole at (αp, δp) =
(294◦, 30◦) and longitude zero-point at α0 = 25◦. A nar-
row structure is visible spanning at least 40◦. We can
further strengthen the case that most of the BHB stars
belong to the Cetus stream by studying their kinemat-
ics. The right panel of Figure 10 shows the BS and BHB
stars with well measured velocities (σV < 30 km s−1) and
−15◦ < B < 30◦, 80◦ < Λ < 120◦) The velocity of Cetus
stars corrected for Galactic rotation, VGSR, is between
−100 and −50 kms−1 while Sgr stars have velocities be-
tween −200 and −100 km s−1 (c.f., Newberg et al 2009).
There is a clear and clean kinematical separation of the
BS and BHB stars belonging to Sgr and Cetus. Given
the distance gradient and radial velocity of Cetus, we see
that its orbital motion is counter-rotating with respect
to that of Sgr.

5. CONCLUSIONS

We have studied the Sagittarius (Sgr) stream in the
southern Galactic hemisphere. In the SDSS Data Re-
lease 8, at most locations along the Sgr orbit, at least
two distinct streams can be discerned, as evidenced from
the density of main sequence turn-off stars. The cross-
sections of the density profile suggest the existence of a
thicker brighter stream and a thinner fainter by a factor
of 5–10 stream, offset by ∼ 10◦. There is strong evidence

that the two streams have different metallicity distribu-
tion functions.

We used red clump and subgiant stars to measure the
distance gradients along the streams. This enables us
to construct composite Hess diagrams to study the stel-
lar populations in the streams. The brighter stream
shows evidence for multiple turn-offs and a prominent
red clump, whereas the secondary stream does not. This
suggests that the brighter stream is composed of more
than one stellar population, and contains a significant
number of metal-rich stars, much like the Sgr remnant
itself. By contrast, the fainter stream is dominated by a
metal-poor population. This conclusion is also supported
by our photometric metalliticies computed for the region
where the Sgr streams cross the ultra-deep SDSS Stripe
82 coadded data.

Our analysis of the new data allows us to untangle a
complicated mix of tidal debris around the South Galac-
tic Cap, where the Sgr streams are crossed by the Cetus
Stream at an angle of ∼ 30◦. The Sgr and Cetus streams
have similar distances, though their stellar populations
and kinematics are different. The structures are not part
of the same disruption event, as the Cetus stream is coun-
terrotating with respect to the Sgr. On the basis of their
density distribution and kinematics, we have shown that
most of the BSs belong to the Sgr stream, whereas most
of the BHBs belong to the Cetus Stream, in this part of
the sky. The BS to BHB ratio in the two streams is strik-
ingly different, as already pointed out by Newberg et al.
(2009). Good spectroscopic coverage of the area is essen-
tial to disentangle the multiple overlapping streams with
different chemical properties, following different distance
gradients.

The work in this paper has extended the ‘Field of
Streams’ (Belokurov et al. 2006) to the south. The new
imaging data show that, just as in the north, the Sgr
stream is accompanied by a fainter stream. The right-
hand panel in Fig 7 shows that the population mix in
the fainter stream of the “bifurcation” around the North
Galactic Cap does not contain as many metal-rich stars
as the brighter stream. The simplest explanation is that
the southern faint stream is part of the same structure
as the northern faint stream.

These results raise the question: Is it possible to pro-
duce the streams with the properties described in this
paper in a disruption of one galaxy or is more than one
progenitor necessary?

Recently, two possible scenarios, both in context of the
Sgr dSph disruption, have shown how to form two al-
most parallel tidal streams from the debris of one parent
galaxy. Fellhauer et al. (2006) suggest that branches A
and B (see Belokurov et al. 2006) could be reproduced
by multiple wraps of the same stream offset on the plane
of the sky by small amount of differential precession. In
this picture, the fainter stream in the North Galactic Cap
area corresponds to the dynamically old tidal debris in
the Sgr trailing arm. However, this model does not pro-
duce two distinct streams in the south, and so now seems
to be ruled out.

Alternatively, Peñarrubia et al. (2010) point out that if
the Sgr progenitor had a rotating stellar disk misaligned
with respect to its orbit, then stripping at consecutive
pericentric passages naturally produces bifurcated debris
tracks on the sky. However, it has been difficult to find
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strong evidence for the residual rotation in the remnant
of Sgr dwarf, as Peñarrubia et al. (2011) show. More-
over, in the scenario of Peñarrubia et al. (2010) the two
streams are not expected to differ significantly in their
stellar populations content as they form at consecutive
pericentric passages. This prediction is somewhat diffi-
cult to reconcile with the new data on the stellar popu-
lations of the streams.

Accordingly, it is tempting to suggest that the two
streams with different properties have actually originated
from two different progenitors. The infall of satellites in
groups is not particular but general, as best illustrated
by the recent arrival of the Large and Small Magellanic
Clouds. Cosmological simulations of structure formation
also find plenty of evidence for group infall (e.g. Li &
Helmi 2008). The picture painted by data however looks
more complex so it will be challenging to build a theo-
retical model that explains the nature of the Sgr stream.
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