Radial velocities & stellar parameter estimates for Giraffe data

Sergey Koposov

IoA Cambridge

The data flow

Input data:

- Keele + CASU reductions
- Individual frames (no cosmic ray masking)
- Stacked frames

• Final frames

(CASU reductions only – 120e3 spectra)

Output Data:

- Estimates of the stellar parameters
- RV estimates and errors
- Best-fit template spectrum with continuum fitted
- Possible emission lines
- Goodness-of-fit estimates
- Diagnostic plots for each fit

Internals

- Code written in python
- Dataversion, fitversion strings for every run. Code versions are stored in git
- File headers, FIBINFO table contents and fit results are stored in the database together with versions. Allows easy querying.
- The same code runs on Keele, CASU and ESO data

• Masking:

Emission lines in HR14, HR15 low S/N regions in some blue setups Tellurics in HR21 Unmasked cosmics/defects

• Cross-correlation :

Use subset of templates (pre-FFTed) Standard cross-correlation with padding, apodising.

Find the best template to use it for the next step

Fitting procedure (2)

• χ^2 fit of the spectra

Two main iterations:

- Template fit: chi-square minimisation over the grid of templates with RV fixed. Continuum is fitted simultaneously.
- RV fit: chi-square minimisation with template fixed

For high S/N spectra the fits are repeated with the rotation velocity parameter free.

- RV errors are obtained from the chi-square behaviour around the minimum
- The Munari grid is still used Linear n-D interpolation between grid points.
- The stellar rotation is implemented by convolving the spectrum with the rotation kernel

VELCLASS FITS extensions/QA

- Each spectrum is processed individually: E.g. no comparisons with previous epochs is done at that stage
- If the S/N is less than 2, LOWSN is being put as class
- The decision whether to mark a star as a "STAR" is based on S/N, chi^2, distance to the best fit template Comparison of the chi^2 vs chi^2 of the continuum only fit Known problems: Outliers/non-masked cosmics in the spectra
- 0.2 km/s is added to the velocity errors (the realistic precision floor)

Photometry

• Every spectrum with (Ra, Dec) get the photometric measurement and proper motion attached

• Cross-match automatically with 2MASS, VHS, UKIDSS, UCAC, SDSS, APASS, PPMXL

- Attach all the magnitudes, PMs and matching distances
- Will probably not work for benchmark stars (high PM, bright stars)
- No additional data quality checks
- Very patchy coverage for several surveys (except 2MASS and PPMXL and UCAC)
- I was asked to put E(B-V)(Schegel) into the catalogs

Measured parameters

• Reasonable Teff log(g), [Fe/H] distributions

• Problem: focusing on grid nodes (grid step defines the precision).

Random errors of logg, logTeff from repeated observations with the same setup

Repeated observations, different setups

Clear systematic differences between parameter determination from HR10 and HR21

Rotation velocities

- Rotation velocities are reasonably well determined
- For MW fields Vrot ~ 0
- Problems: All Vrot <~2-3 insignificant

Repeated observations with different HR

RVs (HR10, HR21)

Velocity precision as function of S/N: Repeated observations separated by > 12 hours

Thick lines 1-sigma intervals Thin lines - 95% intervals

RVs HR10 vs HR21 for final stacked GES MW fields

- Small offsets 0.2-1 km/s between HR10 and HR21 (dependent on which corrections to apply sky/simcal)
- The difference in velocities is often dominated by systematics (template mismatch)

CASU ↔ Keele comparison

Non-parametric classification (work in progress)

- RV aligned spectra Normalized

- We perform PCA/HMF with 10 componentsRoughly 5000 stars

Things to be done, problems

- Masks used for the fitting, emission lines -> save into the DB, put in the products
- Best fit spectrum has to be put in the products.
- Replace the template grid
- Solve the remaining velocity offset issues.
- Use the Vrot fit only if chi-square improves significantly
- Objects with RV variation
- Points with inconsistent HR10 and HR21 to be identified and marked as a separate step

• QC with Keele data – establish a standard set of tests to detect quality problems