PARTICLE ASTROPHYSICS

Tests of Inflation
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Origin of Fluctuations I: The quantum harmonic oscillator

T he action:
1
S = /Edt(z&? — w?z?),
gives us the classical equation of motion

i+ w? = 0. (1)
To describe the quantum harmonic oscillator, we make z (and

its conjugate momentum) into an operator by expanding in an-
nihilation and creation operators:

7 =v(t)a+ v*(t)al.

The coefficients v(t) satistfy the classical equation of motion
(1), with solution

h :
(1) = | —e W1,
v(t) 0



The normalization is fixed by requiring the vacuum state to be
the ground state of the Hamiltionian

_ 1
H = hw (a*a+5).
In the ground state, there are zero point fluctuations — for the
position operator
h

(1312 = (0l77(0) = (%) = -

Origin of Fluctuations II: Quantum fluctuations in de Sitter
space,

The description of quantum fluctuations in de Sitter space is
algebraically more complicated, but no fundamentally new ideas



are involved. We begin with the action

5= [ @5 R~ (V6> - 2V(9))

R is the Ricci scalar (nhot to be confused with the scale factor
R(t). Now, we need to handle perturbations, so write the metric
as

gij = R(D)[(1 — 2R)&;; + hyjl.

scalar perturbations tensor perturbations

and then after a lot of algebra, we can rewrite the action to

second order in ‘R
I

S = L /de‘?’:r [(UI)Q + (90)% + 2|,
2. z



where
> R2(t)
=

and primes denote differentiation with respect to conformal time,
7, dT = [ dt/R(t). [Note that for de Sitter space

v=2zR, Z (:}2

1
. o —e—H!
R(t)H

and runs from r = —oo — 0.] As with the harmonic oscillator, express
v and the conjugate momentum ¢/ as quantum operators,

1 . ,
0= 53, [ @Kl (P)age™ + vji(ryafe ]
We then find that v(¢) satisfies the equation

2
ol + (kg - —2) v = 0,

T



(cf harmonic oscillator) with solution

o—tkT i
e = 1——).
kT ok ( k’T)
(The normalization is chosen so that in the limit k7 > 1, the
vacuum state is the Minkowski vacuum). We can then com-

pute the power spectrum of the scalar metric perturbation R at
horizon crossing R(t)H = k (k|t| = 1):
(Ry)?) = (Joe® _ _H* 1 ( L ) _
2 RQ(I}Q e L2+2 @2&3 '
where ¢ is evaluated at RH = k. In GR, R does not evolve on
superhorizon scales, so once fixed, it remains constant. This

then gives us the amplitude f_\%of the power-spectrum of scalar
,oerturbatfor?s generated during inflation:

[((Ri)?)d%k =

/((’R )2\ k2dk = [/_\. dink,

(2 )3 (2m )2



H4
A2 =_"_ 2
; 272 p? (2)

In an analogous fashion, the fluctuations hij in the metric give

rise to tensor (gravitational wave) perturbations with power-
spectrum:

2 H?
A2 =2 3
T Wﬂ"f% ( )

We know observationally that A% I~ 10_9, SO a detection of

tensor perturbations would fix the energy scale of inflation. Since
H?2 =V,

1/4 16 1 A7
VT x=3.3x10°r% GeV, r=-—5.
AT
If the amplitudes (2) and (3) are constants (i.e. independent of
wavenumber k), the fluctuations are scale-invariant.



Slow roll parameters

If H varies slightly during inflation, the scalar and tensor flucta-
tions will not be exactly scale-invariant.

More generally we can write
A% oc kML AZ o kK",
where the spectral indices are:
ng —1~2n—066 np=—2¢,
and the tensor-scalar ratio is
r = 106e,
where the quantities € and n are slow-roll parameters,

2 2 2 42
_ Mg, (idV) H_Mpldv

2 \Vde OV dg?’

which must necessarliy be small during inflation.

€

Observations of the CMB anisotropies offer the best prospects

for measuring these quantities and learning about the dynamics
of inflation.




Fluctuations in the CMB

We can get a good idea of the evolution of fluctuations prior to
recombination by making the following assumptions:

e Radiation and baryons are tightly coupled by Thomson scat-
tering.We will negect weakly interacting dark matter.

e Neglect gravity. This is accurate for fluctuations with scales much
smaller than the Hubble radius A < ¢t, since the dynamics is dominated by

pressure not gravity.

e Neglect the expansion of the Universe. This is not a particularly
good approximation because recombination is quite an extended process tak-
ing Az ~ 200 at z ~ 1000.



Let us write the photon distribution function as

f(xaqat)zfﬂ_l_fla

where f1 is a perturbation on the black-body function fp, and g
is the comoving photon momentum. We can define the pertur-

pbation to the radiation brightness as
—1
TH 9 fo
A(x,q,t) = — .
(x,q,1) f1(43T0)
Then since Thomson scattering is independent of photon energy,
the Boltzmann equation for the perturbation A is

3& —|— ’}’1’6&
ot R Oz
where the ~* are the direction cosines of @, op is the Thomson

cross-section, ne is the free electron density, v, is the matter

= oqne[Ag + 4’}’1-1% — A],



velocity, and Ag is the isotropic part of A:

1
Ao = —/AdQ.
41 .

Fourier transforming the Boltzmann equation:

dA L A
o —|— P EA = orne[|Do+4pvy—A],  p=k.aq. (1)

The equation of motion for the matter (neglecting expansion)
IS:

dv B, 4
Up — UTﬂei [Al — _trb] \
dt b 3

(2)
where
1 rl
JAN =—/ A ndp,
1 >/ 1 AL,

is the photon energy flux. (This equation tells that it is difficult
for baryons to move relative to the radiation if they are strongly



coupled to the photons). Finally, mass conservation gives the
familiar equation of continuity

d&b ik’l!b
% = _ . 3
7 R (3)

where §; is the baryon overdensity (6, = (pp — pp)/Pp). Equations
(1) - (3) allow us to calculate the evolution of the fluctuations:

Prior to recombination, the baryon component is highly ionised
and the mean-free time for Thomson scattering

1
D'Tﬂrej
is much smaller than the expansion rate, t- < t. This is what
we mean when we say that the matter and radiation are tightly
coupled. The equations (1) and (2) are therefore very 'stiff’,

te =



and so to first order, the terms in square brackets must be close
to zero:

A = Ag+ 4uv.

Now define the quantity X = A+ 4pv and insert back into (1)
and (2). Then to second order in t.

inkX  pck?X
R R2

i.e. for imperfect coupling (non-zero t.) the radiation develops
quadrupolar, octopolar and higher order perturbations. This al-
lows us to get a closed set of equations for Ag and v, valid to
first order in t.:

. ik [4 4. ik
& = — | —p -1 —1 )
0 R [3(L "‘”'(31‘+ 3R )]

pﬁg[ 4 kDo n (4 2ikAg 419211)]
C .

+ O(t3),

A=X—tC[X+i'u

kX7 o[
- ]+tc [X+2

3T 3R sR?

— ) —

3 3R

U

Pm



These equations have solutions of the form:

]

Z } x exp(—It),

with
ik k2t 6 1
I = + — ' (1 — ) *
Rv/3B 6R? 58 T B2 ()
where
_ 14 3P 3P
4p,

T he first term in (*) describes acoustic oscillations with adiabatic
sound speed

~1/2
3P%
s 1 .
: \/§ ( + 4ﬁ’~f)

In the tightly coupled regime, baryons and photons act as a single



fluid, so the inertia of the baryons reduces the sound speed below
the relativistic value ¢/v/3.

The second term in (*) describes damping of small-scale fluctu-
ations by photon diffusion.

A photon within a perturbation will
random walk. The mean time be-
tween collisions is t., so the number of
collisions in time t is N = t/tc. There-
fore photons will diffuse over a length
V/Ncte = ev/tte carrying the matter
with them, in agreement with (*).

Note at recombination zrec = 1000, B =~ 1.65, and the charac-
teristic damping scale is k;/Rg ~ (15 Mpc)—l.



CMB fluctations on large angular scales

On large scales, we need to
perform a full general relativis-
tic analysis. However, the re-
sult is easy to understand. The
temperature anisotropies mea-
sure the potential fluctuations
(via gravitational redshift) on
the last scattering surface the
Sachs-Wolfe effect:

AT  (§¢)y GSM

X
T c2

z=1000

X 5;3)\2 x AN(177)/2

Where the last expression follows for fluctuations with power

spectrum P(k) o k"s.



In practice, we compute the CMB power spectrum, Cy, on the
sky by expanding in spherical harmonics:

AT |
? — ZﬂEmYEm(gaQ})
fm
Co = (lagml?)- (1)

If Q; = Q25 = 0, then the potential fluctuations are independent
of time from the last scattering surface to the present day and
we then find

r (f + (nﬁz_l)) o s =3) if P~ 1.
r(e+ (23%))

Scale-invariant fluctuations therefore lead to EQCE ~ constant at
multipoles less than ~ 100.

Cy x




Polarization: So far, we have assumed that Thomson scattering is
Isotropic. In fact, it is anisotropic. A quadrupolar radiation field will
produce a linearly polarized radiation field after Thomson scattering.
The CMB should be linearly polarized at the few percent level. The
pattern of polarization can be decomposed into an 'electric' type
pattern (E-mode) and a 'magnetic' type (B-mode). Scalar
perturbations generate only E-modes.

HOT | —
Quadrupole \ / / \
Anisotropy — E-~0 — ‘ E =0 ‘
N /N N_ S
Thomson
COLD \ Scattering
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Summary:

comoving scales

A

—1
(aH )
horizon re-enfry
R ~0
sub-horizon (Ru Rkl} SU]}EI‘—]]DI‘ZiDI] AT projection Ce
fé’ transfer
k . function
Zero-point
fluctuations
_ _ CMBE
horizon exit recombination  today
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