PARTICLE ASTROPHYSICS LECTURE 8
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Inflation
e [ he Horizon Problem

Starting with the FRW metric:
dr?

(1 - Kr2)

imagine light pulse emitted at ¢t = O that is detected at time ¢t.

This travels a coordinate distance ry(t)
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The surface defined by rp(t) defines a particle horizon . We are
In causal contact only with particles within our particle horizon.



The proper distance on a t = constant hypersurface is
r r dr
() = [ Vamdr = RO) [ oo
Hence the proper distance to the particle horizon is
t dt’
Jo R(t")
If, for example, R(t) x t® (R  t1/2 in the radiation era), then

B = ‘fa).

So for a conventional equation of state the particle horizon is of
order ct.

dp(t) = cR(t)

T his means that the region of causal contact shrinks as we go
back in time.



As an example, consider the size of the horizon at the time that
matter and radiation decoupled, z ~ 1000 (¢ ~ 1013s). The

particle horizon at the time of decoupling subtends an angle on
the sky of ~ 3°.

e Why is the Universe so nearly homogeneous and isotropic on
large scales?

e Furthermore, we see large-scale fluctuations at the time of
decoupling!



e [ he Flathess Problem
If we examine the Friedmann equations:
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3% — N = —4nG(p+ 3P),
we can see from the first of these equations that at early times
the curvature term is dynamically neglible (recall that the density
of matter and radiation vary as R3and R4 respectively). To
end up a dynamically significant curvature today requires extreme
fine tuning at early times. This is the flatness problem.



If we ignore the cosmological constant, we can rewrite these
equations as

K

2 = b

d

2d—H = —(14 3w)(H?+K),
.

where 7 is the conformal time, dr = dt/R, H = R ldR/dr,
Q2 = p/pc and w is the equation of state parameter w = P/p.
Combining these equations, we find

% = (1 4+ 3w)HQ(2 —1). (1)

Since H > 0, this equation tells us that provided (1 + 3w) is
positive, the solutions tend to 2 =1 as+t— 0. (i,e. Q=1 is
an attractor as 7 — 0). To end up with 2 ~ 0.2 at the present
day requires 2 to differ from unity by about 1 part in 1090 at
the Planck time. There is no known mechanism that can explain

such fine tuning.



Inflation

Now, in the previous lecture, we showed that a homogeneous
scalar field with potential V(¢) has density and pressure

1 H

py = 5¢2+V(¢s),
1. |

If the scalar field is moving slowly ¢ < V(¢), the equation of

state is
P.
w = —¢ ~ —1.
P

T his solves both the horizon and flathess problems!



The solution to the Friedmann equations gives

R(t) o et H =~ constant,
and so the particle horizon is

t dt/
dp(t) = cR(t) Jo R R~ g (e(Ht) _ 1) '

This can end up to be many orders of magnitude bigger than
the observable Universe (~ ¢/Hgp) today.

The exponential expansion rapidly dilutes any curvature term in
the Friedmann equation, so we would expect the Universe to be
spatially flat at the present day. We can see this clearly from
equation (1):

dS?

o (1 +3w)HQ((2 - 1).

If (143w) <0, =1 is now an attractor solution as r — oo.



The (homogeneous and isotropic) empty space-time with H =
constant is known as de-Sitter space.

We can consider de-Sitter space as a hyperboloid in MinkowskKi
space. The entire space-time is covered by coordinates with
closed spatial curvature as shown in (a).

Or we can choose a different time-slicing covering part of de-
Sitter space giving spatially flat coordinates as in (b).

(b)



Specific Example: V(¢) = 2;”2@2 V() ,

The equation of motion of the

scalar field (spatial gradients /
are assumed small — if inflation
starts they are rapidly smoothed
away) is :

b+3H=-V'(¢), V(9) =_m?".

where the Hubble parameter is

> _1/1.5 N 1,0 2.2
H2 =2 (62 + V() = (6% +m2¢?)

Throughout this Section, I will use Planck units with (8xG = 1/M§ = 1).

The field ¢ is therefore expressed in units of the (reduced) Planck mass Mp.
Combining the above equations:

¢+ \/3(652 +m2¢2)1/24 4+ m24 = 0,



If we make the substitution ¢ = ¢(d¢/do) , the equation of mo-
tion can be written as a non-linear first order differential equa-
tion:

dp - \/g(fi‘? + m2¢?)1/2¢ + m2¢
dp ¢ '
This equation has attractor solutions.

attractor
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If the field starts off with a value ¢ > 1, it will find the attractor

.. [2 do
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and inflation will begin with an equation of state

, 2
P=—p+@2=—p+§ﬂ12ﬁ—p.

In this model, inflation ends when the field drops to ¢ ~ 1, since
then

| 1 | ,
V(g) = Sm2¢® ~ ¢,
This is an example of a high field inflation model, since ¢ > Mp
during inflation. But note that
M3

m

V<M if ¢<V2

SO the energy density can remain well below the Planck scale for
high field values.



T he end of inflation and reheating

When ¢ ~ 1, inflation ends and the field oscillates around mini-
mum of the potential. If we could ignore Hubble expansion, the
equation of motion gives SHM with angular frequency m. How-
ever, the Hubble expansion acts as a friction term and damps
the oscillation.

A perturbative solution of the equations of motion gives:

_ 8cos mt sin 2mt 1
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To produce the hot Big Bang, the inflaton ¢ must be coupled
to other matter fields. Particle production as the field oscillates
causes the Universe to reheat.




We can model reheating phenomenologically by adding another
friction term ¢, to the equation of motion:

¢+3Hop=—-V'(¢) — ¢

representing particle production.

T he physics of reheating is complicated because Bose condensa-
tion can become important introducing parametric resonances.

Generally, the inflaton will decay within a few oscillations. The
Universe is then filled with radiation of temperature Try and
evolves as described in earlier lectures with R(t) o t1/2 until it
becomes matter dominated.

Provided Try < TguT, We avoid producing unwanted relics such
as GUT monopoles.



How many e-folds of inflation do we need?

—_— =

log (length)

/" Behaviour of Hubble
/== radius in non—inflationary

-~ 7 dy ~ constant
cosmology

Radiation
domination

INFLATION

log a(t) —_—

N() =In (R(tend)) ‘

R(t)
We need inflation to produce a Universe at least a big as the
present Hubble radius, kg = RoHg/c (k is the comoving wavenum-
ber). We calculate the number of e-foldings from the time that

ky crosses the Hubble radius (kg = RyHins/C) and the end of
inflation:



ke _ ( Ry ) (REnd) (RReh) (Hlnf)
RoHg Rend/) \ Fren Ro Hg

The first term on the rhs is the required number of e-foldings.
The remaining terms depend on the timescale of reheating and
the energy scales of inflation and reheating. If reheating is as-
sumed to be instantaneous at the end of inflation Rren = REnd,
this gives

kpc 1 Vinf ) ( TReh )
N ~60.4 —1In —In( — |In .
(ROHO) *5 1016GeV 1016 GeVv

So, if inflation happens at ~ 1016GeV, we need about 60 e-folds
of inflation to produce the observable Universe. Note that a
galaxy scale ~ 1Mpc crossed the Hubble radius only ~ 9 e-folds
after ky. The cosmological structure that we see in the Universe
today crossed the Hubble scale during a brief period well before
the end of the inflationary phase.




Inflation can be realised in many different ways, and can
Involve more than one field: V(%)
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In fact there are many, many, models of inflation...... @ Paul Shellard

S-dimensional assisted inflation
assisted brane inflation
anomoly-induced inflation
assisted inflation

assisted chaotic inflation
boundary inflation

brane inflation
brane-assisted inflation
brane gas inflation
brane-antibrane inflation
braneworld inflation
Brans-Dicke chaotic inflation
Brans-Dicke inflation

bulky brane inflation

chaotic inflation

chaotic hybrid inflation
chaotic new inflation
D-brane inflation

D-term inflation
dilaton-driven inflation
dilaton-driven brane inflation
double inflation

double D-term inflation

dual inflation

dynamical inflation
dynamical SUSY inflation
eternal inflation

extended inflation
extended open inflation
extended warm inflation
extra dimensional inflation
F-term inflation

F-term hybrid inflation
false-vacuum inflation
false-vacuum chaotic inflation
fast-roll inflation
first-order inflation
gauged inflation
Hagedorn inflation
higher-curvature inflation
hybrid inflation
hyperextended inflation
induced gravity inflation
intermediate inflation
inverted hybrid inflation

isocurvature inflation......cccceecereeennn



