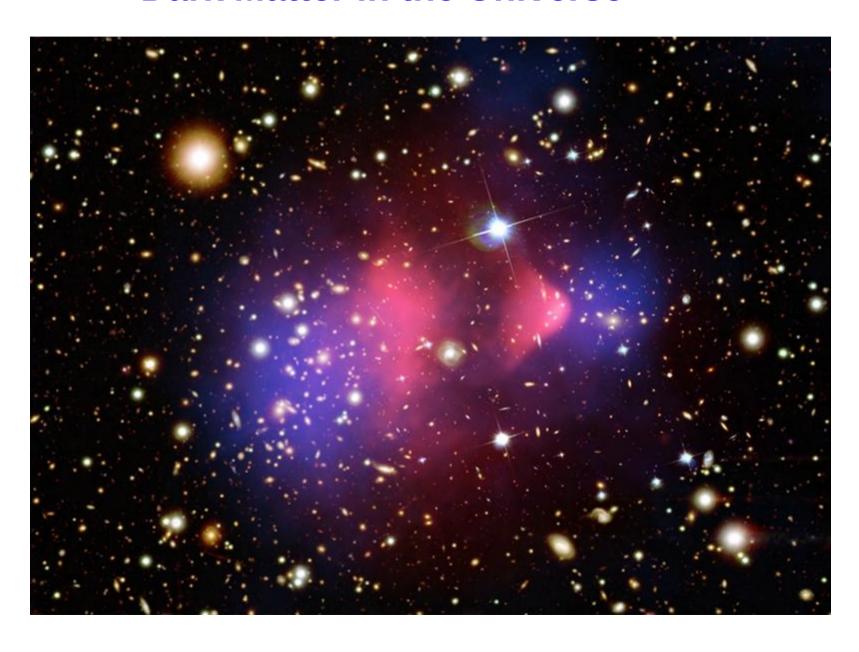
PARTICLE ASTROPHYSICS LECTURE 5

Dark Matter in the Universe



Experimental Evidence for Dark Matter

There are two ways of measuring masses of objects in the Universe:

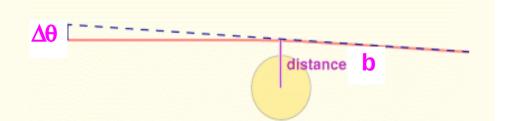
Dynamic measurements

Virial Theorem : 2T + W = 0

Galaxy rotation curves : $V_{\rm rot}^2(r) = \frac{GM(r)}{r}$ Hydrostatic equilibrium : $M(< r) = -\frac{r^2}{G\rho(r)}\frac{dP}{dr}$

Gravitational lensing

Einstein bend angle : $\Delta \theta = \frac{4GM}{bc^2}$



The need for dark matter

From galaxy redshift surveys we can measure the *galaxy luminos-ity function* (mean number density of galaxies with luminosities in the range $\mathcal{L} \to \mathcal{L} + d\mathcal{L}$). It is well approximated by a *Schechter function*:

$$\phi(\mathcal{L})d\mathcal{L} = \phi^* \left(\frac{\mathcal{L}}{\mathcal{L}^*}\right)^{\alpha} \exp\left(-\frac{\mathcal{L}}{\mathcal{L}^*}\right) \frac{d\mathcal{L}}{\mathcal{L}^*},$$

with parameters:

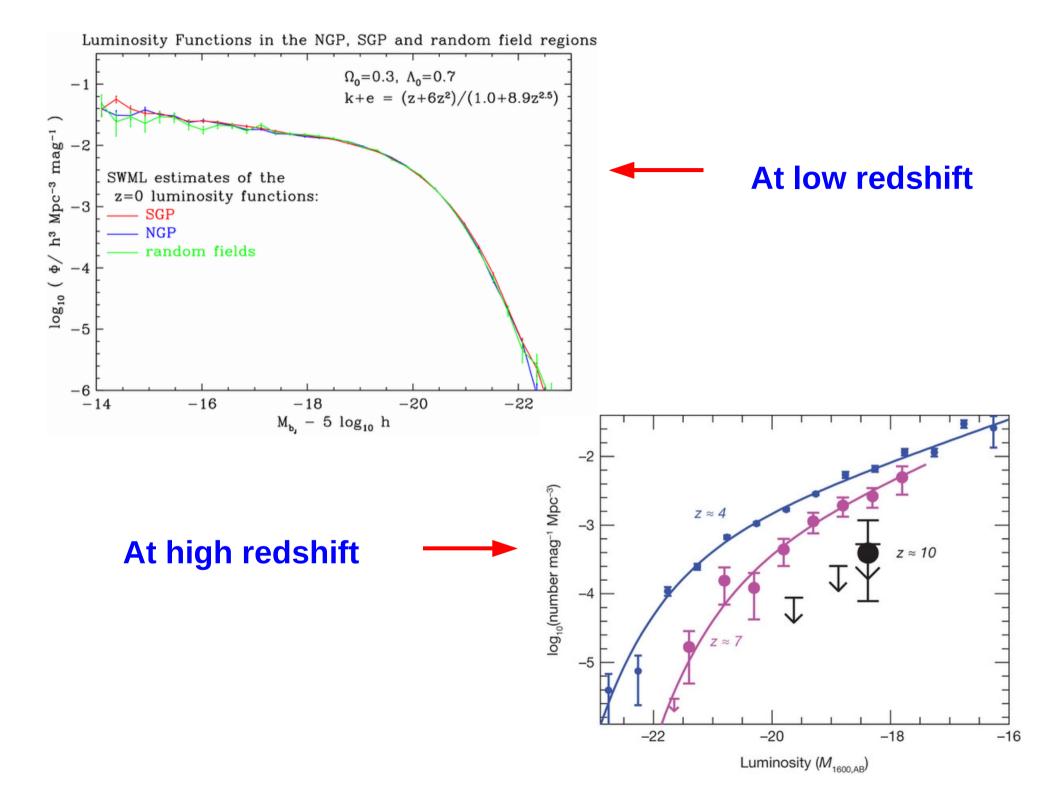
$$\phi^* = 1.4 \times 10^{-2} h^3 \text{Mpc}^{-3}, \quad \mathcal{L}^*_B = 1.3 \times 10^{10} h^{-2} L_{\odot} \text{ (B - band)}, \quad \alpha \approx -1.$$

Hence the mean luminosity density is

$$\langle \mathcal{L} \rangle = \int_0^\infty \mathcal{L} \phi(\mathcal{L}) d\mathcal{L} \approx (1.7 \pm 0.2) \times 10^8 h \mathcal{L}_{\odot} \text{ Mpc}^{-3},$$

whereas the critical density of the Einstein-de Sitter model is

$$\rho_c = 2.8 \times 10^{11} h^2 M_{\odot} \text{Mpc}^{-3}.$$



So, a critical density Universe requires

$$\left(rac{M}{\mathcal{L}}
ight)_{
m crit} pprox (1580 \pm 190) \left(rac{M}{\mathcal{L}}
ight)_{\odot}.$$

But:

Main sequence stars : $\frac{M}{\mathcal{L}} \approx \left(\frac{M_{\odot}}{M}\right)^3 \left(\frac{M}{\mathcal{L}}\right)_{\odot}$

Typical stellar populations : $\frac{M}{\mathcal{L}} \approx 2 - 10 \left(\frac{M}{\mathcal{L}}\right)_{\odot}$

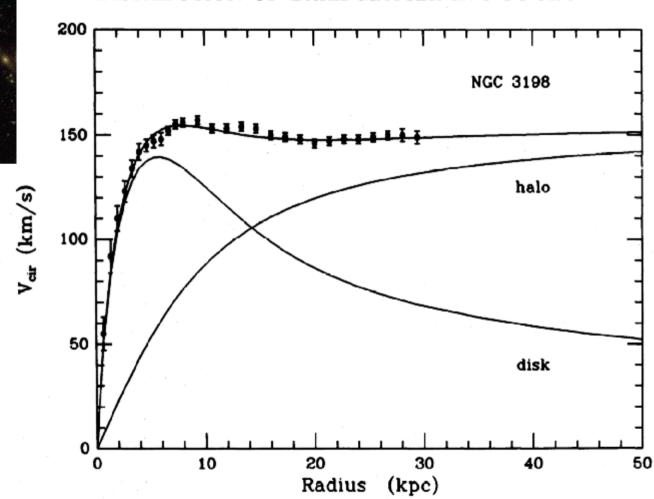
Ordinary stars in galaxies therefore contribute only:

$$\Omega_* \approx 0.002 - 0.003$$
,

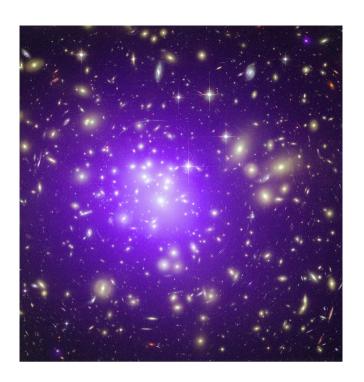
Most of the matter in the Universe must therefore be dark!

Spiral Galaxy Rotation Curve

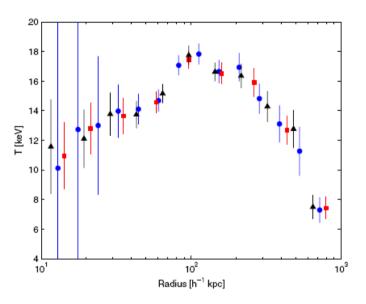
DISTRIBUTION OF DARK MATTER IN NGC 3198



$$V_{\mathsf{rot}}^2(r) = \frac{GM(r)}{r}$$

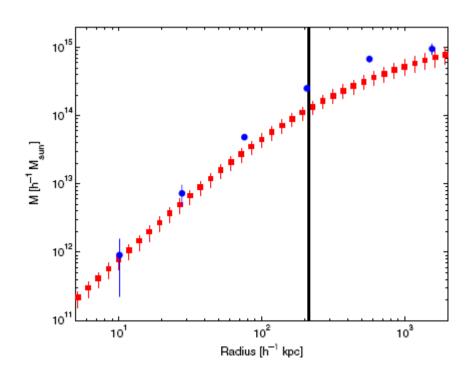


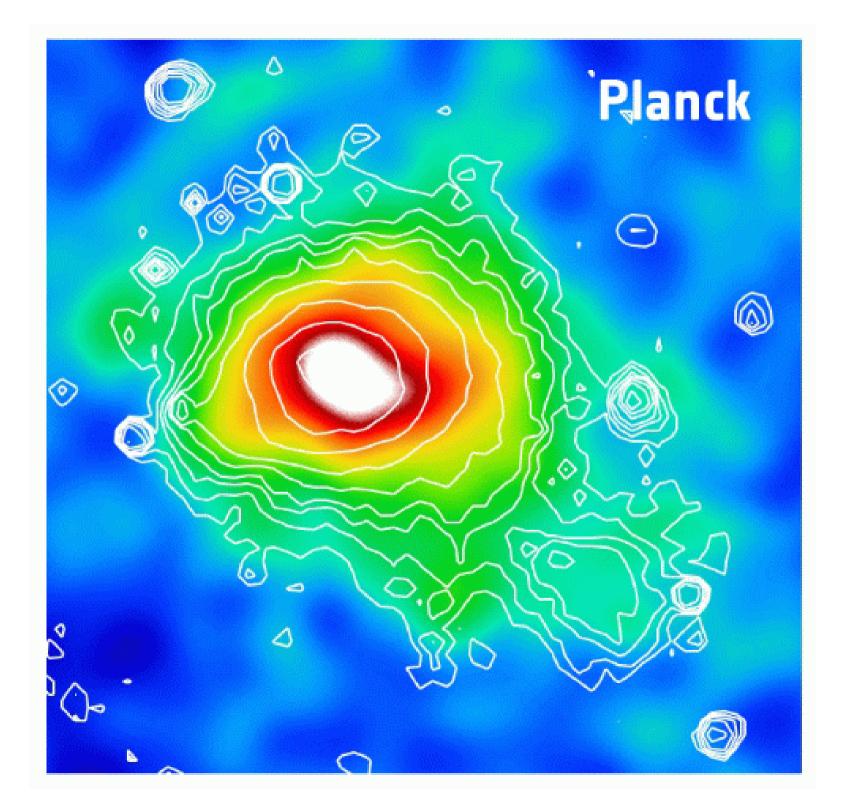
Galaxy Cluster Dynamics



A1689

$$\langle v^2
angle ~\sim 1000~{
m kms^{-1}}$$
 $R \sim 1 h^{-1} {
m Mpc}$ $kT_e \sim 5-10~{
m keV}$ $\left(rac{M}{\mathcal{L}}
ight) ~\sim 350 h \left(rac{M}{\mathcal{L}}
ight)_{\odot}$

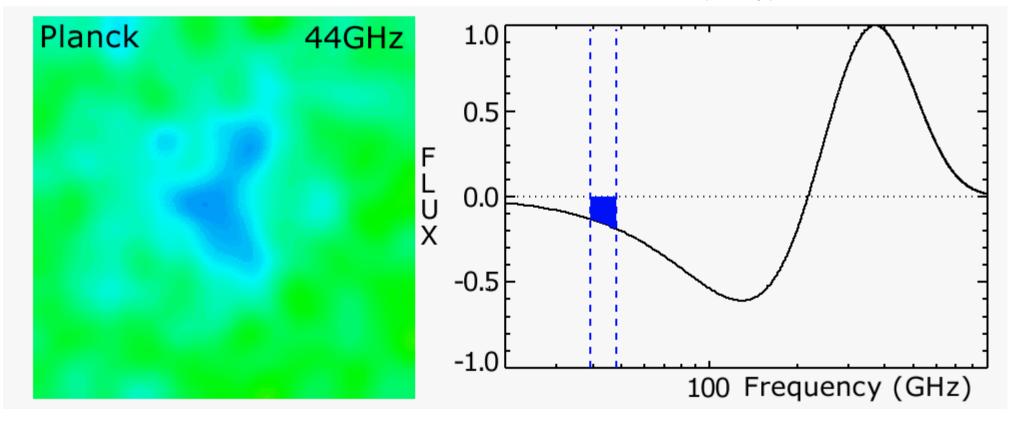




Thermal Sunyaev-Zeldovich Effect

$$\frac{\Delta T}{T}(\theta) = f(x) \frac{\sigma_T}{m_e c^2} \int n_e(r) T_e(r) dl_{\text{los}}$$

$$f(x) = x \frac{(e^x + 1)}{(e^x - 1)} - 4, \quad x = \left(\frac{h\nu}{kT\gamma}\right)$$



Massive Compact Halo Objects (MACHOS)

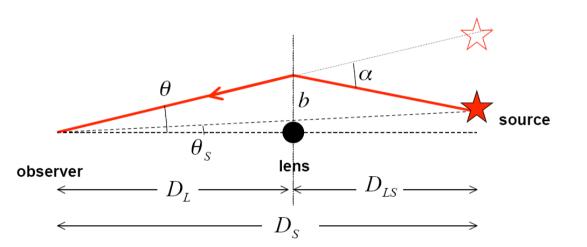
e.g. primordial black holes, PopIII stars, 'jupiters' $(M < 0.08M_{\odot})$.

Gravitational lensing:

$$\boldsymbol{\alpha}D_{LS} + \boldsymbol{\theta}_s D_S = \boldsymbol{\theta}D_S,$$

giving the lensing equation:

$$\boldsymbol{\alpha}(\theta D_{LS}) = \frac{D_S}{D_{LS}} (\boldsymbol{\theta} - \boldsymbol{\theta}_s).$$



The distances D_s , D_{LS} , D_S are angular diameter distances, e.g.

$$D_{LS} = \frac{R_0(r_S - r_L)}{(1 + z_S)}$$

where r_s , r_L are the comoving coordinate distances of the source and lens.

For a point mass lens, we can define the Einstein angle

$$\theta_E = \sqrt{\frac{4GM}{c^2} \frac{D_{LS}}{D_S D_L}},$$

and so we can write the lens equation as

$$\theta_E^2 \frac{\boldsymbol{\theta}}{|\boldsymbol{\theta}|^2} = (\boldsymbol{\theta} - \boldsymbol{\theta}_S).$$

So, defining

$$\mathbf{y} = \frac{\boldsymbol{\theta}_S}{\theta_E}, \quad \mathbf{x} = \frac{\boldsymbol{\theta}}{\theta_E},$$

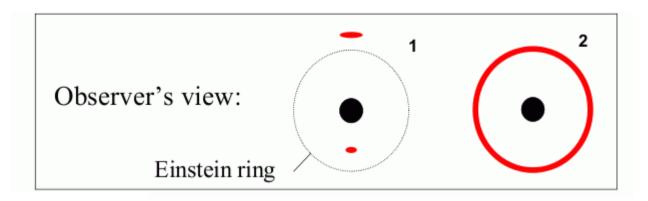
the lensing equation is evidently a quadratic equation

$$\mathbf{y} = \mathbf{x} - \frac{\mathbf{x}}{|\mathbf{x}|^2},$$

with solutions

$$\mathbf{x} = \frac{1}{2}(|\mathbf{y}| \pm \sqrt{4 + |\mathbf{y}|^2}) \frac{\mathbf{y}}{|\mathbf{y}|}.$$

If y = 0, the solution is |x| = 1, *i.e.* an *Einstein Ring*, $|\theta| = \theta_E$.



Lensing preserves surface brightness, and so the images are *mag-nified*:

$$\mu = \left| \frac{\partial \boldsymbol{\theta}_S}{\partial \boldsymbol{\theta}} \right|^{-1}.$$

For a point mass lens and a 'small' source

$$\mu_{\pm} = \frac{1}{4} \left(\frac{y}{\sqrt{y^2 + 4}} + \frac{\sqrt{y^2 + 4}}{y} \pm 2 \right).$$

 $\mu+>1$ for all source positions, whereas μ_- can be greater or less than unity depending on the position of the source.

Consider a star in our Galaxy:

$$\theta_E = 0.9 \left(\frac{M}{M_{\odot}}\right)^{1/2} \left(\frac{D_L}{10 {\rm kpc}}\right)^{-1/2} \left(1 - \frac{D_L}{D_S}\right)^{1/2} {\rm mas}.$$

Although the image separation is unobservably small, the magnification is observable. If a point mass has a transverse velocity:

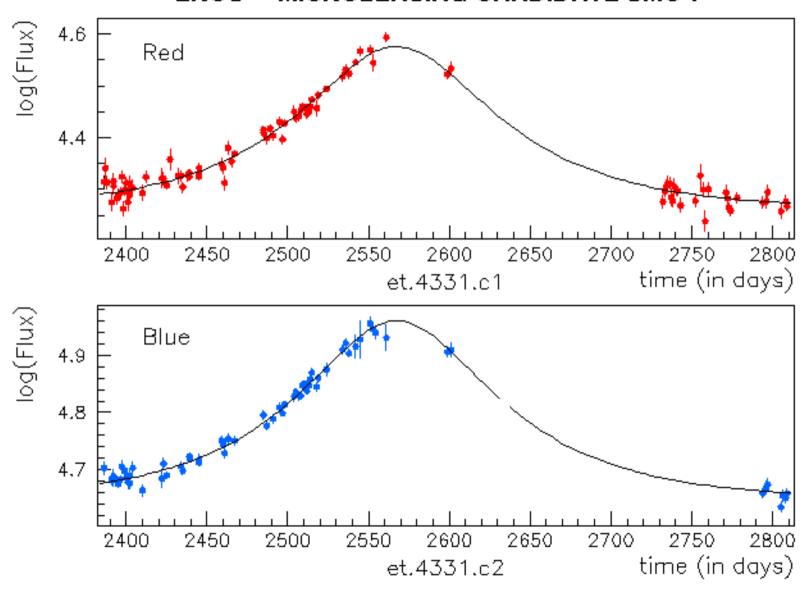
$$\frac{v}{D_L} = \dot{\theta} = 4.2 \text{mas/y} \left(\frac{v}{200 \text{kms}^{-1}} \right) \left(\frac{D_L}{10 \text{kpc}} \right)^{-1},$$

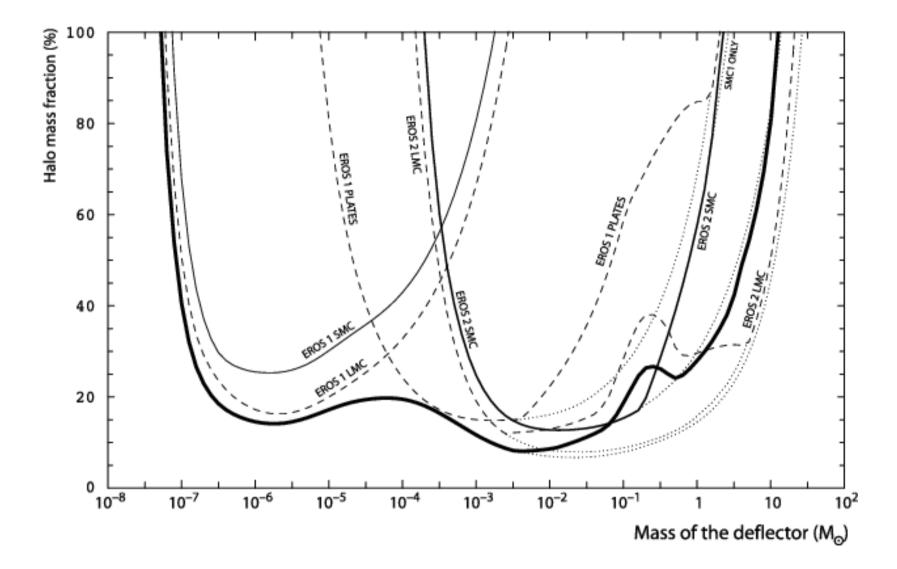
then the lensed background star will vary on a timescale:

$$t_E = \frac{\theta_E}{\dot{\theta}} = 0.2 \mathrm{y} \left(\frac{M}{M_{\odot}} \right)^{1/2} \left(\frac{D_L}{10 \mathrm{kpc}} \right)^{1/2} \left(1 - \frac{D_L}{D_S} \right)^{1/2} \left(\frac{v}{200 \mathrm{kms}^{-1}} \right)^{-1}.$$

We can therefore search for *microlensing events* by imaging dense star fields. (MACHO and EROS experiments imaged the Magellanic Clouds). Frequency and duration of microlensing events constrains MACHOS in the Galactic halo.

EROS - MICROLENSING CANDIDATE SMC 1





Massive neutrinos

The mass eigenstates $|\nu_1\rangle$, $|\nu_2\rangle$, $|\nu_3\rangle$, need not be the same as the flavour eigenstates $|\nu_e\rangle$, $|\nu_\mu\rangle$, $|\nu_\tau\rangle$. For Dirac neutrinos, the flavour and mass eigenstates are related by a coupling matrix $|\nu_f\rangle = U|\nu_i\rangle$:

$$\begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

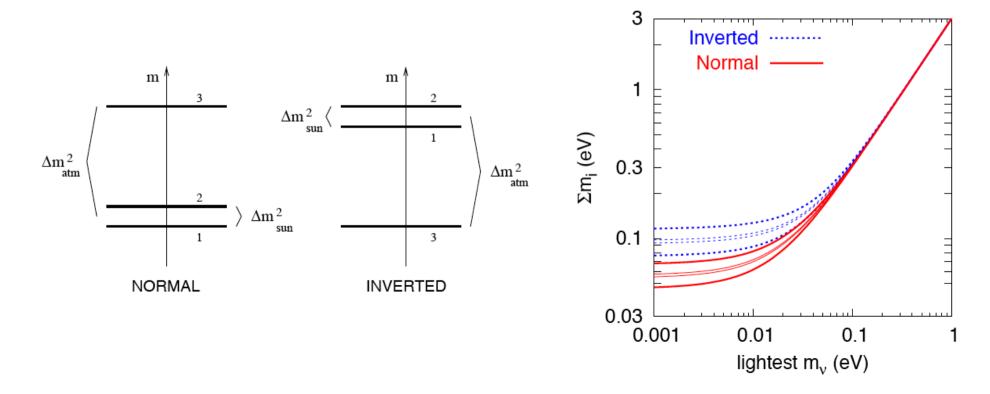
where $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$ and δ is a CP violating phase. Non-zero neutrino masses therefore lead to *flavour oscillations*.

From solar neutrino experiments (Δm_{21}^2) and atmospheric neutrino experiments (Δm_{31}^2) , the following (3σ) constraints have been derived:

$$\Delta m_{21}^2 = (7.9_{-0.8}^{+1.0}) \times 10^{-5} \text{ eV}^2, \quad \Delta m_{31}^2 = (2.2_{-0.8}^{+1.1}) \times 10^{-3} \text{ eV}^2,$$

 $s_{21}^2 = 0.3_{-0.06}^{+0.10}, \quad s_{23}^2 = 0.50_{-0.16}^{+0.18}, \quad s_{13}^2 \le 0.43.$

Note that tritium β -decay experiments limit $m_{\nu_e} < 2.2$ eV. These observations lead to the following possibilities:



Recall that neutrinos decouple at $kT\sim 3~\text{MeV}\gg m_{\nu}$, so neutrinos were *relativistic* at the time of decoupling. But collisionless particles satisfy the Boltzmann equation

$$\frac{\partial f}{\partial t} - \frac{\dot{R}}{R} p \frac{\partial f}{\partial p} = 0,$$

which we can write as

$$\left(\frac{\partial f}{\partial t}\right)_q = 0,$$

in terms of a comoving momentum q = pR. The neutrino distribution function therefore retains its relativistic shape

$$f(p,t) = \frac{1}{\left[\exp\left(\frac{pc}{kT_{\nu}}\right) + 1\right]},$$

with $T_{\nu} \propto 1/R$, even if neutrinos have a finite rest mass.

Note also that because e^+e^- annihilate after neutrino decoupling,

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}.$$

The neutrino and photon number densities are therefore:

$$n_{\nu} = \frac{4\pi g_{\nu}}{h^{3}} \int \frac{p^{2}dp}{\left[\exp\left(\frac{pc}{kT_{\nu}}\right) + 1\right]} = \frac{4\pi g_{\nu}}{h^{3}} \left(\frac{kT_{\nu}}{c}\right)^{3} \frac{3}{4} \Gamma(3)\zeta(3),$$

$$n_{\gamma} = \frac{4\pi g_{\nu}}{h^{3}} \int \frac{p^{2}dp}{\left[\exp\left(\frac{pc}{kT_{\gamma}}\right) - 1\right]} = \frac{4\pi g_{\nu}}{h^{3}} \left(\frac{kT_{\gamma}}{c}\right)^{3} \Gamma(3)\zeta(3),$$

Hence

$$n_{
u} = \frac{3}{4} \left(\frac{T_{
u}}{T_{
\gamma}} \right)^3, \quad n_{
u} = \frac{3}{11} n_{
\gamma}, \quad n_{
\gamma} \approx 409 \text{cm}^{-3},$$

and if neutrinos have mass

$$\rho_{\nu} = m_{\nu}c^2 n_{\nu}.$$

So:

$$\Omega_{\nu}h^2 = 1.02 \left(\frac{m_{\nu}}{100 \text{ eV}}\right).$$

and if $m_{\nu} \approx 0.06$ eV (most likely possibility, unless neutrino masses are degenerate), $\Omega_{\nu} = 0.0006 h^{-2}$. If this is true, then curiously, $\Omega_{\nu} \approx \Omega_{*}!$

Note also that if neutrinos are massive, there is a characterstic length scale

$$\lambda_{\nu} \sim c t_{\rm nr}, \quad k T_{\nu}(t_{\rm nr}) = m_{\nu} c^2.$$

i.e. the Hubble radius at the time that neutrinos become non-relativistic. Neutrino fluctuations are damped by free-streaming

on scales $(\lambda \lesssim \lambda_{\nu})$. (Note that velocities decay as 1/R at $t > t_{\rm nr}$, so most of the damping occurs when the neutrinos are relativistic). The present physical scale of the neutrino damping length is

$$\lambda_
u \sim c t_{
m nr} \left(rac{R_0}{R(t_{
m nr})}
ight) \sim 14 \left(rac{\Omega_
u h^2}{0.3}
ight)^{-1} {
m Mpc.}$$

If neutrinos dominated the dark matter density, *galaxies and clusters could not form*.

WIMPs: Weakly Interacting Massive Particles

If the dark matter particles were *cold* (*i.e.* random motions of the particles negligible) and *weakly interacting*, the damping scale would be negligibly small.

The most attractive possibility is a *supersymmetric* particle. SUSY particles are expected to be created in pairs with opposite values of R-parity. Heavier SUSY particles decay to lighter ones in R-conserving processes ending up with a lightest stable SUSY particle (LSP). To explain the dark matter, the LSP must be electrically neutral.

'Best' candidate is a *neutralino* . In MSSM, there are four neutralino states χ_n^0 that are linear combinations of the bino, zino and two higgsinos. The mass matrix depends on θ_W and m_Z of the SM and on four parameters of the C(onstrained)MSSM (gaugino mass $m_{1/2}$; squark/slepton mass m_0 ; ratio of vacuum expectation values of the higgsinos $tan\beta$; mass parameter of higgsinos μ).

From J. Ellis 'Prospects for Discovering Supersymmetry at the LHC':arXiv:0810.1178 [hep-ph]

allowed by the WMAP constraint $\Omega_{\text{CDM}}h^2 = 0.1099 \pm 0.0062$

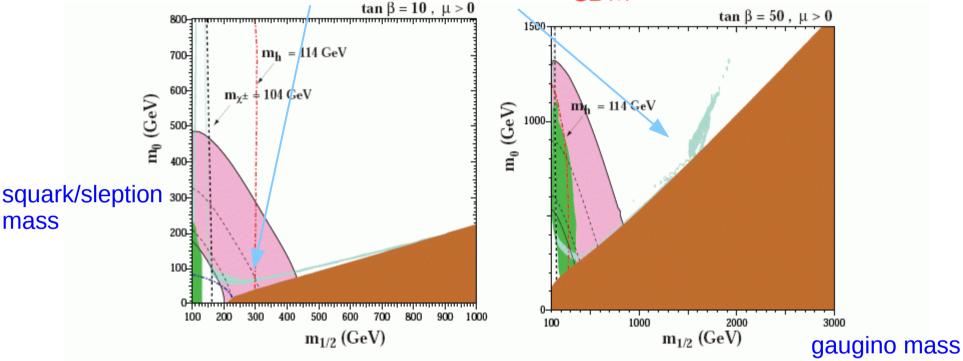


Fig. 1. The CMSSM $(m_{1/2}, m_0)$ planes for (a) $\tan \beta = 10$ and (b) $\tan \beta = 50$, assuming $\mu > 0$, $A_0 = 0$, $m_t = 175$ GeV and $m_b(m_b) \overline{^{MS}}_{SM} = 4.25$ GeV [22]. The near-vertical (red) dot-dashed lines are the contours for $m_h = 114$ GeV, and the near-vertical (black) dashed line is the contour $m_{\chi^{\pm}} = 104$ GeV. Also shown by the dot-dashed curve in the lower left is the region excluded by the LEP bound $m_{\tilde{e}} > 99$ GeV. The medium (dark green) shaded region is excluded by $b \to s\gamma$, and the light (turquoise) shaded area is the cosmologically preferred region. In the dark (brick red) shaded region, the LSP is the charged $\tilde{\tau}_1$. The region allowed by the measurement of $g_{\mu} - 2$ at the 2- σ level assuming the e^+e^- calculation of the Standard Model contribution, is shaded (pink) and bounded by solid black lines, with dashed lines indicating the 1- σ ranges.

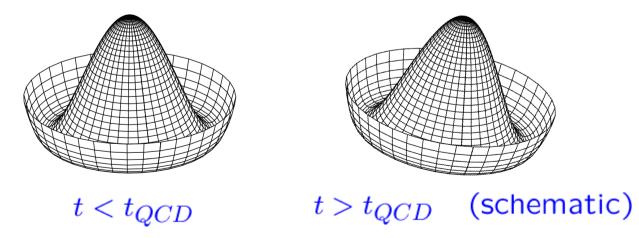
Axions

In QCD Lagrangian can contain a CP violating term

$$\mathcal{L} = \theta \frac{g^2}{16\pi} G^{\mu\nu} \tilde{G}_{\mu\nu},\tag{1}$$

where $G^{\mu\nu}$ is the gluon field strength. However the observed degree of CP violation on the strong interaction is small. For example, the experimental limit on the neutron magnetic moment limits $|\theta|\lesssim 10^{-9}$. Such a small number requires an explanation. This is the *strong CP problem*.

Possible solution suggested by Peccei and Quinn. Introduce a new U(1) symmetry:



The degree of freedom around the minimum of the potential is a Goldstone boson, the *axion*. At the QCD phase transition, non-linear instanton effects cause the potential to develop a minimum (shown schematically in the figure), exactly cancelling the CP violating term (1).

After the QCD phase transion, the axion has a small mass:

$$m_a \sim \frac{\Lambda_{\rm QCD}^2}{f_{PQ}} \sim 0.6 \left(\frac{10^7 {\rm GeV}}{f_{PQ}}\right) {\rm eV},$$

where $\Lambda_{\rm QCD} \sim$ 200 MeV is the energy scale of the quark-hardron phase transition and f_{PQ} is the Peccei-Quinn symmetry breaking scale. But unlike neutrinos, the axion is a coherently oscillating scalar field that obeys the equation of motion:

$$\ddot{\phi} + \frac{3\dot{R}}{R}\dot{\phi} + \frac{\partial V(\phi)}{\partial \phi} = 0.$$

Approximating $V(\phi) = (m_a^2/2)\phi^2$, and neglecting the Hubble expansion (fast oscillations) the solution is SHM with angular frequency m_a . The time averaged density and pressure of the oscillating field is therefore:

$$\langle \rho \rangle = \frac{1}{2} \langle \dot{\phi}^2 \rangle + \langle V(\phi) \rangle = \langle \dot{\phi}^2 \rangle,$$

 $\langle P \rangle = \frac{1}{2} \langle \dot{\phi}^2 \rangle - \langle V(\phi) \rangle = 0.$

Thus the oscillating scalar field behaves like cold dark matter, even if the mass, m_a , is small.

Note that the PQ axion can oscillate into a photon of energy m_a in the presence of a magnetic field. Laboratory and various astrophysical limits strongly constrain PQ axions. But axion-like fields seem to be prevelant in string theory.