PARTICLE ASTROPHYSICS LECTURE 5

Dark Matter in the Universe




Experimental Evidence for Dark Matter

There are two ways of measuring masses of objects in the Uni-
verse:

e Dynamic measurements

Virial T heorem : 2T + W =

M
Galaxy rotation curves : V,%t(r) — GM(r)
T
2
dP
Hydrostatic equilibrium : M((<r) = — "
Gp(r) dr

e Gravitational lensing

4GM A== ——
Einstein bend angle: A6 = ;2 [distm; e




T he need for dark matter

From galaxy redshift surveys we can measure the galaxy luminos-
ity function (mean number density of galaxies with luminosities
in the range £ — £L+dL). It is well approximated by a Schechter

function:
| | LN\ LN\ dL
/ dl = o5 [ = — =) ==,
seye = () o0 (~z)

with parameters:
¢* = 1.4x10?h3Mpc3, L*p =1.3x10"%"?L, (B — band),
Hence the mean luminosity density is

(L) = '[;O LH(L)AL ~ (1.7 + 0.2) x 108hLe Mpc—3,
whereas the critical density of the Einstein-de Sitter model is

pe = 2.8 x 10 h2MoMpc—3.



Luminosity Functions in the NGP, SGP and random field regions
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So, a critical density Universe requires

(E) ~ (1580 + 190) (E)
L critm L EJ‘

But;:

3
Main sequence stars: E P~ (%) (E)
L M L)
M M
—~2-10 (—)
L L)

Ordinary stars in galaxies therefore contribute only:

Typical stellar populations :

(2. ~ 0.002 — 0.003,

Most of the matter in the Universe must therefore be dark!
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Galaxy Cluster Dynamics
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Thermal Sunyaev-Zeldovich Effect
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Massive Compact Halo Objects (MACHQOS)

e.g. primordial black holes, Poplll stars, "jupiters’ (M < 0.08Mg)).

Gravitational lensing:

(!DLS—l-BSDS = GDs,

giving the lensing equation:

source

&(QDLS) — . (6—93)
LS

The distances Ds, Dy g, Dg are angular diameter distances, e.g.

Do — Ro(rg —rp,)
o (1+ zg)

where rg, r; are the comoving coordinate distances of the source
and lens.




For a point mass lens, we can define the Einstein angle
\/4GM Dy ¢
Op = .

c2 DgDj’
and so we can write the lens equation as
6
07— = (0—05).
So, defining
7, 0
y — S!« X = P
0 Op
the lensing equation is evidently a quadratic equation
X

= X — ——F.

with solutions

1 2y Y
X = + /4 + —.



If y = 0, the solution is |x| =1, i.e. an Einstein Ring, |08 = 0.

- 2

Observer’s view: PN

Einstein ring S

Lensing preserves surface brightness, and so the images are mag-
nified:
00| 1

00

For a point mass lens and a 'small’ source

1 Y Jy2 + 4
Pt = \/m+ » + 2

w4+ > 1 for all source positions, whereas u— can be greater or
less than unity depending on the position of the source.




Consider a star in our Galaxy:

7\ 1/2 ~1/2 1/2
M D D
0p =09 | — ( L ) R mas.
f'l{f@ 10kpc DS

Although the image separation is unobservably small, the magni-
fication is observable. If a point mass has a transverse velocity:

1 . 1 —1
Y =9=4.2mas/y( : ) ( DL ) :
D; 200kms—1/ \10kpc

then the lensed background star will vary on a timescale:

tp=CE — ooy (M 1’/2( Dy )”Q . Do ”2( v )—1
E=7 = My 10kpc Dg 200kms—1/)

We can therefore search for microlensing events by imaging dense

star fields. (MACHO and EROS experiments imaged the Mag-
ellanic Clouds). Frequency and duration of microlensing events

constrains MACHQOS in the Galactic halo.
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Massive neutrinos

The mass eigenstates |v1), |vo), |v3), need not be the same as
the flavour eigenstates |ve), |vu), |vr). For Dirac neutrinos, the
flavour and mass eigenstates are related by a coupling matrix
V) = Ulw);

. —id
C12C13 S512C13 S13€ \1

id ) id )
—S512C93 — C1258923513€ C1oCo3 — S125923513€ S23C13

L id ) id
1\512523—'1-121-235135* —C125923 — 512023513€ r323f313/l

where s;; = siné;;, ¢;; = cosf;; and 4 is a CP violating phase.
Non-zero neutrino masses therefore lead to flavour oscillations.



From solar neutrino experiments (Am%l) and atmospheric neu-
trino experiments (Am%l), the following (30)) constraints have
been derived:

&m%l = (7. 9+1 O) x 107> eV?, Am,31 = (2. 2+1 g) x 107 3 evZ,

2 +0.10 2 +0.18 2
591 — 03—006 . 893 — 050—016 . 513 E 0.43.

Note that tritium (g-decay experiments limit my, < 2.2 eV. These
observations lead to the following possibilities:
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Recall that neutrinos decouple at k71" ~ 3 MeV > my, SO neutri-
nos were relativistic at the time of decoupling. But collisionless
particles satisfy the Boltzmann equation

of R of_
at R op
which we can write as
(5),=0
ot/ q

in terms of a comoving momentum g = pR. The neutrino distri-
bution function therefore retains its relativistic shape

. 1
O Jen () +1

with T, « 1/R, even if neutrinos have a finite rest mass.

2



Note also that because ete~ annihilate after neutrino decoupling,

4 \1/3
T;_} — (—) T’:,f.

11
The neutrino and photon number densities are therefore:
Ar p2d Argy (KT \3 3
o= 9 b =T (2) 2rexe).
WS lexo (F) +1] B2 e
4mg p2dp Amqgy (K1~ 3
= .~‘13U/ pc. — h,3y( CJ) (3)¢(3).
oo () -1
Hence

1,
Ny — 3 ( y) , Ny = 131?11,, N~y R 409(:[1'1_3j



and if neutrinos have mass

2
Pr =— TnyC Typ.

So:

Qf2=1.2( T )
vit 0 100 eV

and if m;, =~ 0.06 eV (most likely possibility, unless neutrino

masses are degenerate), 2, = 0.0006h 2. If this is true, then
curiously, €2, ~ 2.

Note also that if neutrinos are massive, there is a characterstic
length scale

)\p ~J Ctnr, k‘Ty(tnr) — ﬂly[ﬁz,

i.e. the Hubble radius at the time that neutrinos become non-
relativistic. Neutrino fluctuations are damped by free-streaming



on scales (A < A\v). (Note that velocities decay as 1/R at t > tnr,
so most of the damping occurs when the neutrinos are relativis-
tic). The present physical scale of the neutrino damping length

1S
1
, Q, h2
)\umci:nr( fo )m14( ”) Mpc.

R(tnr) 0.3

If neutrinos dominated the dark matter density, galaxies and clus-
ters could not form.



WIMPs: Weakly Interacting Massive Particles

If the dark matter particles were cold (i.e. random motions
of the particles negligible) and weakly interacting, the damping
scale would be negligibly small.

T he most attractive possibility is a supersymmetric particle. SUSY
particles are expected to be created in pairs with opposite val-
ues of R-parity. Heavier SUSY particles decay to lighter ones in
R-conserving processes ending up with a lightest stable SUSY
particle (LSP). To explain the dark matter, the LSP must be
electrically neutral.

'Best’ candidate is a neutralino . In MSSM, there are four neu-
tralino states Xﬂ that are linear combinations of the bino, zino
and two higgsinos. The mass matrix depends on Oy and my
of the SM and on four parameters of the C(onstrained)MSSM
(gaugino mass mlxg; squark/slepton mass mgq; ratio of vacuum
expectation values of the higgsinos tan3; mass parameter of hig-
gsinos ).



From J. Ellis 'Prospects for Discovering Supersymmetry at the
LHC"arXiv:0810.1178 [hep-ph]

allowed by the WMAP constraint QCDMhQ = 0.1099 = 0.0062
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Fig. 1. The CMSSM (my 9, mo) planes for (a) tan 3 = 10 and (b) tan 3 = 50, assuming p > 0, Ag =0,
me = 175 Gel and mb(mﬁjﬁ = 4.25 GeV [23. The near-vertical (red) dot-dashed lines are the

contours for mp =114 GeV, and the near-vertical (black) dashed line is the contour m, + =104 GeV.
Also shoum by the dot-dashed curve in the lower left is the region excluded by the LEP bound mz = 99
GeV. The medium (dark green) shaded region is excluded by b — s+, and the light (turquoise) shaded
area is the cosmologically preferred region. In the dark (brick red) shaded region, the LSP is the charged
71. The region allowed by the measurement of g, — 2 at the 2-o level assuming the et e~ calculation of
the Standard Model contribution, is shaded (pink) and bounded by solid black lines, with dashed lines
indicating the 1-o ranges.



AXions

In QCD Lagrangian can contain a CP violating term
92 e
L=0-"-G"G,, 1
TG Gy (1)
where GHY is the gluon field strength. However the observed de-
gree of CP violation on the strong interaction is small. For ex-

ample, the experimental limit on the neutron magnetic moment

limits 0] < 10—9. Such a small number requires an explanation.
This is the strong CP problem.

Possible solution suggested by Peccei and Quinn. Introduce a
new U(1) symmetry:
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T he degree of freedom around the minimum of the potential is a
Goldstone boson, the axion. At the QCD phase transition, non-
linear instanton effects cause the potential to develop a minimum
(shown schematically in the figure), exactly cancelling the CP
violating term (1).

After the QCD phase transion, the axion has a small mass:

AQQCD Y (1OTGev) v
PO IPo

where Aqcp ~ 200 MeV is the energy scale of the quark-hardron
phase transition and pr is the Peccei-Quinn symmetry breaking
scale. But unlike neutrinos, the axion is a coherently oscillating
scalar field that obeys the equation of motion:

oV (o)
o0

Mg ™~

@+—@+ = 0.



Approximating V(¢) = (m2/2)¢2, and neglecting the Hubble
expansion (fast oscillations) the solution is SHM with angular
frequency my. The time averaged density and pressure of the
oscillating field is therefore:

B+ V(@) = (),

(P) = 28— (V(g) =0.

(p) =

Thus the oscillating scalar field behaves like cold dark matter,
even if the mass, mq, IS small.

Note that the PQ axion can oscillate into a photon of energy
mq N the presence of a magnetic field. Laboratory and various
astrophysical limits strongly constrain PQ axions. But axion-like
fields seem to be prevelant in string theory.



