PARTICLE ASTROPHYSICS LECTURE 3

Thermal history and nucleosynthesis

© Addison-Wesley Longman

Summary of Thermal History

Event	Т	kТ	${\rm g}_{\rm eff}$	z	t
Now	2.7 K	0.0002 eV	3.3	0	13 Gyr
First Galaxies	16 K	0.001 eV	3.3	5	1 Gyr
Recombination	3000 K	0.3 eV	3.3	1100	300,000 yr
$\rho_{M} = \rho_{R}$	9500 K	0.8 eV	3.3	3500	50,000 yr
e⁺e⁻pairs	10 ^{9.7} K	0.5 MeV	11	10 ^{9.5}	3 s
Nucleosynthesis	10 ¹⁰ K	1 MeV	11	10 ¹⁰	1 s
Nucleon pairs	10 ¹³ K	1 GeV	70	10 ¹³	10 ⁻⁷ s
E-W unification	10 ^{15.5} K	250 GeV	100	10 ¹⁵	10 ⁻¹² s
Grand unification	10 ²⁸ K	10 ¹⁵ GeV	100(?)	10 ²⁸	10 ⁻³⁶ s
Quantum gravity	10 ³² K	10 ¹⁹ GeV	100(?)	10 ³²	10 ⁻⁴³ s

Motion of a free particle

We can derive the equations of motion of a free particle from the Lagrangian:

$$\mathcal{L} = m(g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu})^{1/2}, \quad \delta \int m ds = \delta \int m \left(g_{\mu\nu}\frac{dx^{\mu}}{dt}\frac{dx^{\nu}}{dt}\right)^{1/2} dt.$$

The equations of motion of a free particle are

$$\frac{dp_{\alpha}}{dt} = \frac{1}{2} g_{\mu\nu,\alpha} p^{\mu} \dot{x}^{\nu}$$

(valid for any gravitational field). The conjugate momenta are

$$p_{\alpha} = \frac{mg_{\alpha\nu}\dot{x}^{\nu}}{(g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu})^{1/2}} = m\frac{dx_{\alpha}}{d\tau}.$$

Note that $\dot{x}^{\nu} = (1, \dot{x}^i)$, and so we can write the coordinate ve-

locity as

$$\dot{x}^{\alpha} = \frac{p^{\alpha}}{p_0}.$$

In addition

$$g^{\mu\nu}p_{\mu}p_{\nu} = m^2.$$

For a freely falling partice in FRW metric

$$\begin{aligned} \frac{dp_i}{dt} &= 0\\ \frac{dp_0}{dt} &= \frac{1}{2}g_{jk,0}p^j \dot{x}^k = -R\dot{R}p^j \dot{x}^j\\ &= -R\dot{R}\frac{p^j p^j}{p_0}. \end{aligned}$$

Hence we can write

$$\frac{dp_0}{dt} = -\frac{\dot{R}p^2}{Rp_0}$$

where

$$p^2 = \frac{p_i p_i}{R^2}.$$
 (1)

From the normalization condition $g^{\mu\nu}p_{\mu}p_{\nu} = m^2$,

$$p_0^2 - \frac{p_i p_i}{R^2} = p_0^2 - p^2 = m^2.$$

Hence:

$$p_0 \frac{dp_0}{dt} = p \frac{dp}{dt} = -\frac{\dot{R}}{R} p^2.$$

So $p \propto R^{-1}$, consistent with (1).

So, the equations of motion simply tell us that the (proper) momentum of a particle decays *adiabatically* as the Universe expands, *independent of the mass of the particle*.

The distribution function

 $\delta N = f(x^i, p_i, t) \delta x^1 \delta x^2 \delta x^3 \delta p_1 \delta p_2 \delta p_3$

The phase space volume element

 $\delta x^1 \delta x^2 \delta x^3 \delta p_1 \delta p_2 \delta p_3$

is an *invariant* under coordinate transformations. In the absence of collisions, the distribution function f is therefore constant along the path of a particle (Lioville's theorem). The stress-energy tensor of a gas of particles is

$$T^{\mu\nu} = \int \frac{d^4p}{(-g)^{1/2}} 2\delta(g^{\mu\nu}p_{\mu}p_{\nu} - m^2)p^{\mu}p^{\nu}f,$$

$$= \int dp_0^2 \delta(p_0^2 - p^2 - m^2) \frac{1}{R^3} \frac{p^{\mu}p^{\nu}}{p_0} f dp_1 dp_2 dp_3$$

$$= \int p^{\mu}v^{\nu}f \frac{dp_1 dp_2 dp_3}{R^3}, \quad v^{\nu} = \dot{x}^{\nu} = \frac{p^{\nu}}{p_0}.$$

Hence if the distribution function is isotropic

$$\rho = T^{00} = 4\pi \int Efp^2 dp, \qquad (2a)$$

$$P = \frac{1}{3}T^{ii} = \frac{4\pi}{3} \int \frac{f}{E} p^4 dp. \qquad (2b)$$

where $E = p_0$.

Note that for ultra-relativistic matter, E = p, hence necessarily

$$P = \frac{1}{3}\rho c^2$$

(A stiffer equation of state requires strong collective interactions.) For particles of species i in *thermal equilibrium* at temperature T, the distribution function is

$$n_i(p)dp = \frac{4\pi}{h^3} \frac{g_i p^2 dp}{\left[\exp\left(\frac{E-\mu_i}{kT}\right) \pm 1\right]}$$

where $E^2 = p^2 + m^2$, g_i is the number of spin states, and

+1 for Fermions (Fermi – Dirac distribution)

-1 for Bosons (Bose – Einstein distribution)

The quantities μ_i are the *chemical potentials*, and are fixed by conserved quantum numbers (see later).

Ignoring chemical potentials, we can evaluate the integrals

$$\rho = \frac{4\pi}{h^3} g_i \int \frac{Ep^2 dp}{\left[\exp\left(\frac{E}{kT}\right) \pm 1\right]},$$

$$P = \frac{4\pi}{3h^3} g_i \int \frac{p^4 dp}{E\left[\exp\left(\frac{E}{kT}\right) \pm 1\right]}.$$

for ultra-relativistic particles (E = p):

$$\rho = aT^4 \left(\frac{g_i}{2}\right)$$
 (Bosons)
 $\rho = \frac{7}{16} aT^4 g_i$ (Fermions)

where

$$a = \frac{\pi^2 k^4}{15\hbar^3 c^3}.$$

Hence we can define an *effective statistical weight* for relativistic

particles:

$$g^*(T) = \sum_{\text{bosons}} g_i \left(\frac{T_i}{T}\right)^4 + \sum_{\text{fermions}} \frac{7}{8} g_i \left(\frac{T_i}{T}\right)^4$$

Recall that energy conservation requires

$$\frac{d(\rho R^3)}{dR} = -3PR^2.$$

We can rewrite this as:

$$d((\rho + P)R^3) = R^3 dP.$$

Hence

$$TdS = d(\rho R^3) + PdR^3$$

= $d[(\rho + P)R^3] - R^3dP$
= 0.

So conservation of energy is equivalent to conservation of entropy within a comoving volume element. If $\rho(T)$, P(T), then it is straightforward to show that

$$S = \frac{R^3}{T}(\rho + P) + \text{constant.}$$

Example: Computing the neutrino temperature

At $T \gtrsim 10^{10} K$ the relativistic species are

$$\gamma, e^{\pm}, \nu_e, \overline{\nu}_e, \nu_\mu, \overline{\nu}_\mu, \nu_\tau, \overline{\nu}_\tau,$$

and the neutrinos are in thermal equilibrium via the weak reactions

$$e^+ + e^- \iff \nu_i + \overline{\nu}_i$$

The collision timescale is

$$t_{\rm coll}^{-1} \sim n_e \langle \sigma_w v \rangle \propto T^5$$

and the expansion timescale is

$$t_{\exp}^{-1} \sim \frac{\dot{R}}{R} \propto T^2 \qquad \left(H^2 = \frac{8\pi G}{3}\rho\right).$$

So, electrons and neutrinos decouple when

 $t_{\rm COII} \gtrsim t_{\rm exp},$

which occurs at a temperature of $kT \sim 3$ MeV. The e^+e^- annihilate at $kT \sim 1$ MeV boosting the radiation density.

Before e^+e^- annihilation

$$\rho = aT^4 + \frac{7}{4}aT^4 + \rho_{\nu}(T).$$

After e^+e^- annihilation

$$\rho = aT_{\gamma}^4 + \rho_{\nu}(T).$$

For relativistic particles in thermal equilibrium

$$S = \frac{R^3}{T}(\rho + P) = \frac{4R^3}{3T}\rho,$$

Hence

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} = 1.93K.$$

Collisionless Boltzmann equation

For homogeneous components, the distribution function is a function of E ($E \equiv p_0$) and t, f(E,t). The collisionless Boltzmann equation is then

$$\frac{\partial f}{\partial t} + \frac{dp_0}{dt} \frac{\partial f}{\partial p_0} = 0.$$

Recall that the equations of motion give

$$\frac{dp_0}{dt} = -\frac{\dot{R}p^2}{Rp_0}.$$

So,

$$\frac{\partial f}{\partial t} - \frac{\dot{R}p^2}{Rp_0} \frac{\partial f}{\partial p_0} = 0.$$

Now integrate over $p^2 dp$

$$4\pi \int \frac{\partial f}{\partial t} p^2 dp - 4\pi \frac{\dot{R}}{R} \int \frac{p^4}{p_0} \frac{\partial f}{\partial p_0} dp = 0,$$

i.e.

$$\frac{\partial n}{\partial t} - 4\pi \frac{\dot{R}}{R} \int p^3 dp \frac{\partial f}{\partial p} = 0, \qquad p_0 dp_0 = p dp$$

integrating the second term by parts

$$\int p^{3} \frac{df}{dp} dp = \left[p^{3} f \right]_{-\infty}^{\infty} - 3 \int p^{2} f dp,$$

we finally get,

$$\frac{dn}{dt} + 3\frac{\dot{R}}{R}n = 0.$$

This simply tells us that in the absence of collisions, the number density is diluted by the expansion of the Universe $(n \propto R^{-3})$.

Collisional Boltzmann equation

Consider, for example, particle-antiparticle annihilations

 $X + \overline{X} \Longleftrightarrow Y + \overline{Y}.$

Assume that Y and \overline{Y} are in thermal equilibrium and that CP invariance holds. Then $n_x = \overline{n}_x$ and including collisions, the rate equation can be written as

$$\frac{dn}{dt} + 3\frac{\dot{R}}{R}n = \langle \sigma v \rangle (n_{\text{equ}}^2 - n^2)$$
(1)

where

$$\langle \sigma v \rangle n \overline{n} \approx \frac{1}{h^6} \int \sigma(p, \overline{p}) v f \overline{f} d^3 p d^3 \overline{p}.$$

and $\langle \sigma v \rangle n_{equ}^2$ is the production rate and n_{equ} is the LTE (local thermodynamic equilibrium) abundance of X, \overline{X} at temperature T.

It is easy to see what the solutions of (1) look like. The relevant timescales are the collision timescale, t_{coll} , and the expansion timescale, t_{exp} :

$$t_{\text{coll}}^{-1} \sim n \langle \sigma v \rangle, \qquad t_{\text{exp}}^{-1} \sim \frac{\dot{R}}{R}.$$

• If $t_{\rm COII} << t_{\rm exp}$, then the rate equation is very stiff and the solution is

 $n = n_{\text{equ}}(T).$

• If $t_{\rm COII}$ << $t_{\rm exp},$ then the particles are collisionless and the solution is

 $n \propto R^{-3}$.

So the *relic abundance* is

$$n(t) \approx n_{\text{equ}}(t_f) \frac{R^3(t_f)}{R^3(t)},$$

where t_f is the 'freeze-out' time defined by

 $t_{\rm COII} = t_{\rm exp}.$

Note that if the particles X are massive at t_f ,

$$n_{
m equ}(T_f) \propto \left(rac{m_X}{T_f}
ight)^{3/2} \exp\left(-rac{m}{kT_f}
ight).$$

Primordial Nucleosynthesis

• Stage 1: T >> 1 MeV:

Weak interactions

$$\begin{array}{rcl}
n + \nu_e &\iff p + e \\
e^+ + n &\iff p + \overline{\nu}_e \\
n &\iff p + e + \overline{\nu}_e
\end{array}$$

and EM interactions

$$e + e^+ \iff \gamma + \gamma$$

maintain all components in thermal equilibrium (g* = 10.75). The neutron-proton ratio in thermodynamic equilibrium is

$$\frac{n}{p} = \left(\frac{m_n}{m_p}\right)^{3/2} \exp\left(-\frac{Q}{kT}\right)$$

where

$$Q = (m_n - m_p)c^2 = 1.29 \text{MeV}$$
$$m_n = 936.6 \text{MeV}, \quad m_p = 938.3 \text{MeV}$$

• Stage 2: $T \approx 0.8 \text{MeV}$, freeze-out:
$$\sigma_w = 10^{-47} (kT/1 \text{MeV})^2 m^2$$
$$n\sigma_w c \approx H \text{ at } kT \approx 0.8 \text{MeV}, \quad (t \approx 1s)$$

so the neutron-proton ratio freezes out at

$$\frac{n}{p} = \exp\left(-\frac{1.29}{0.8}\right) \approx \frac{1}{5}.$$

If all of the neutrons end up bound into Helium (almost correct), then the Helium abundance by mass is

$$Y_{\text{He}} = \frac{4m_p n_{\text{He}}}{m_p n_H + 4m_p n_{\text{He}}} = \frac{2(n/p)}{1 + n/p} \approx 0.25.$$

• Stage 3: $T \approx 0.7 - 0.05 \text{MeV}$:

Fusion begins. But, there is a 'deuterium bottleneck', because deuterium has a low binding energy and is easily dissociated by the blackbody radiation. Deuterium production is therefore delayed until blackbody photons are redshifted.

Key Fusion Reactions

Sakharov criteria for generating baryon (lepton) number asymmetry

• Need a physical process that violates baryon (lepton) number.

 Needs a physical process that violates invariance under C and CP. (Necessary to ensure a different reaction (or decay rate) for particles and antiparticles.)

• Needs a departure from thermal equilibrium (**CPT** requires particle and antiparticles have *exactly* equal mass). In absence of conserved numbers, chemical potentials are zero. Hence in thermal equilibrium, the distribution functions of particles and antiparticles are identical.

Appendix I: What is the origin of the source term in the Boltzmann equation?

Assume a simple reaction:

 $\psi \overline{\psi} \to X \overline{X},$

and assume Maxwell-Boltzmann statistics. The net production rate of particles ψ and $\overline{\psi}$ is

 $-\int d\Pi_{\psi} d\Pi_{\overline{\psi}} d\Pi_{\overline{X}} d\Pi_{\overline{X}} (|\mathcal{M}|^{2}_{\psi\overline{\psi}\to X\overline{X}} f_{\psi} f_{\overline{\psi}} - |\mathcal{M}|^{2}_{X\overline{X}\to\psi\overline{\psi}} f_{X} f_{\overline{X}}) \delta^{4} (p_{\psi} + p_{\overline{\psi}} - p_{X} - p_{\overline{X}}),$ where $d\Pi = gd^{3}p/(h^{3}E).$

If CP is conserved (T invariance) then

$$|\mathcal{M}|^2_{\psi\overline{\psi}\to X\overline{X}} = |\mathcal{M}|^2_{X\overline{X}\to\psi\overline{\psi}} = |\mathcal{M}|^2_{X\overline{X}\to\psi\overline{\psi}}$$

And if $X\overline{X}$ are in *thermal equilibrium*

$$f_X f_{\overline{X}} = \exp\left(-\frac{E_X}{kT}\right) \exp\left(-\frac{E_{\overline{X}}}{kT}\right) = \exp\left(-\frac{E_{\psi}}{kT}\right) \exp\left(-\frac{E_{\overline{\psi}}}{kT}\right),$$

since energy conservation requires $E_X + E_{\overline{X}} = E_{\psi} + E_{\overline{\psi}}$.

So, the net production rate is

$$-\int d\mathsf{\Pi}_{\psi} d\mathsf{\Pi}_{\overline{\psi}} |\mathcal{M}|^2 (f_{\psi}f_{\overline{\psi}} - f_{\psi}^{\mathsf{equ}}f_{\overline{\psi}}^{\mathsf{equ}}),$$

and if the cross-section varies slowly with momentum, we can do the integrals giving the equation in the notes:

 $\langle \sigma v \rangle (n_{\sf equ}^2 - n^2).$

Appendix II: Why do we need C and CP violation for baryogenesis?

If C is a symmetry, then every B violating reaction $X \rightarrow Y + Z$ has the same rate as the C conjugate reaction:

 $\Gamma(X \to Y + Z) = \Gamma(\overline{X} \to \overline{Y} + \overline{Z}).$

If this is true, then baryon number is conserved.

However, violation of **C** is not enough. Consider a baryon violating process that creates *left-handed* baryons $X \to q_L q_L$. If **CP** is a symmetry then the rates for this reaction is the same as the CP-conjugate reaction $\overline{X} \to \overline{q}_R \overline{q}_R$. If CP is conserved

 $\Gamma(X \to q_L q_L) + \Gamma(X \to q_R q_R) = \Gamma(\overline{X} \to \overline{q}_L \overline{q}_L) + \Gamma(\overline{X} \to \overline{q}_R \overline{q}_R),$ and so again, no net baryon number.

So, we need violation of both C and CP.