PARTICLE ASTROPHYSICS LECTURE 3

Thermal history and nucleosynthesis
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Summary of Thermal History

Event T KT
Now 2.7K 0.0002 eV
First Galaxies 16 K 0.001 eV
Recombination 3000K 0.3 eV
Py = Pr 9500K 0.8 eV
e*e pairs 1097K 0.5 MeV
Nucleosynthesis 100K 1 MeV
Nucleon pairs 108K 1 GeV
E-W unification 10"°K 250 GeV
Grand unification 102 K 10" GeV
Quantum gravity 102K 10" GeV
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Motion of a free particle

We can derive the equations of motion of a free particle from
the Lagrangian:

dx* da¥ 1/2
dt.

L= ﬂl(g#yi’“i"”')lf?, 4 /md.s =4 /tm (gﬂy T

The equations of motion of a free particle are

dpa 1 .
—_— = — . H oV
dr el
Vall or any dgravitationa e . e conjugate momenta are
lid f itati | field). Th ' t t
mgavr” dza
, = — T —.

Note that z¥ = (1,2%), and so we can write the coordinate ve-



locity as

In addition

g pupy = m2.
For a freely falling partice in FRW metric
dp;

= 0
dt
dpo L 1 ok . j‘
. 59jk,0?j~’fj' = —RRp’z
— —RR@.
PO
Hence we can write
dpo _ Rp°

dt Rpg



where

PiP;
p° = R;- (1)
From the normalization condition gt”p,py, = mg,

2 PiPi 2 2 92
Hence:

0 4t dt R

So p x R~1, consistent with (1).

So, the equations of motion simply tell us that the (proper)
momentum of a particle decays adiabatically as the Universe
expands, independent of the mass of the particle.



T he distribution function

ON = f(::ci,pi, t)5$15m25$35p15p25p3
T he phase space volume element
5m15$25$35p15p25p3
is an invariant under coordinate transformations. In the absence
of collisions, the distribution function f is therefore constant

along the path of a particle (Lioville’s theorem). The stress-
energy tensor of a gas of particles is

THY

d4p Yo LAV TN
1 php?

/ d;u%é(po —p? — mg) ~_fdpydpodps
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Hence if the distribution function is isotropic

p = T =4r [ Efpap, (2a)
1 .. 4n [ f

P = —T”=—/— 4dp. b
3 3 | gP P (2b)

where E = pg.

Note that for ultra-relativistic matter, E = p, hence necessarily

(A stiffer equation of state requires strong collective interac-
tions.)



For particles of species : in thermal equilibrium at temperature
T, the distribution function is

47 gip>dp
h3 [exp (%&) + 1}

where E? = p? + m?, ¢; is the number of spin states, and

n;(p)dp =

+1 for Fermions (Fermi — Dirac distribution)
—1 for Bosons (Bose — Einstein distribution)

The quantities u; are the chemical potentials , and are fixed by
conserved quantum numbers (see later).



Ignoring chemical potentials, we can evaluate the integrals

_ Am / EpZdp
"7 R e (f) £1]
P — 4 4dp

W’gi/E[exp( ):I:l}

for ultra-relativistic particles (F = p):

p = aT*? (%) (Bosons)
p = laT"‘gz (Fermions)
16
where
2 k4
~ 15R3¢3

Hence we can define an effective statistical weight for relativistic



particles:

g*(T") = Lposons Yi (%) + Zfermlons gYi (%)4
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Recall that energy conservation requires

d(pR>) _ 4 ppo
dR .

We can rewrite this as:

d((p + P)R®) = R3dP.
Hence

d(pR3) + PdR3

d[(p + P)R3] — R3dP

0.

So conservation of energy is equivalent to conservation of en-

tropy within a comoving volume element. If p(7), P(T), then it
is straightforward to show that

R3
S = ?(,0 + P) + constant.

TdS



Example: Computing the neutrino temperature

At T 2 1019K the relativistic species are

Y E':I:!' UE’.:-FE:U,U.-:'F,LL: L""':":vg":":'

and the neutrinos are in thermal equilibrium via the weak reac-
tions

et +e «— v; + U;
T he collision timescale is

—1
tcoll

and the expansion timescale is

m%rxTz (H2=%p).

~ Ne{owv) X T

—1
texp



S0, electrons and neutrinos decouple when

teoll = texps

which occurs at a temperature of k7'~ 3MeV. The ete™ anni-
hilate at k71" ~ 1MeV boosting the radiation density.

Before ete— annihilation
p=al*+ ;aT4 + pu(T).
After ete~ annihilation
p = aTy + pu(T).
For relativistic particles in thermal equilibrium

R3 4R3
—(P‘|‘ )_S—T'O

Hence

4\ 1/3
T, = — T, = 1.93K.
v (11) |



Collisionless Boltzmann equation

For homogeneous components, the distribution function is a
function of E (E = pg) and ¢, f(E,t). The collisionless Boltz-
mann equation is then

of | dpodf _

ot dt Opg
Recall that the equations of motion give
dpo _ _Rp?
dt Rpg
So,
of Rp? of



Now integrate over p2dp

af - R [p*of
471"/ 5?5 pedp — 4“—1’?/}303}3{] p = 0,

I.e.
on R af
[vPdpt =0, podpo = pdp
Op
iIntegrating the second term by parts
3df
/p—dp—[3f —3/ p? fdp,
dp
we finally get,

dn R
— 4+ 3 = 0.
-I- Rﬂ

This simply tells us that in the absence of collisions, the number
density is diluted by the expansion of the Universe (n R_3).



Collisional Boltzmann equation

Consider, for example, particle-antiparticle annihilations

X+X<«<=Y+Y.

Assume that Y and Y are in thermal equilibrium and that CP
Invariance holds. Then ny = n, and including collisions, the rate
equation can be written as

d R
d—?+3ﬁn — <U“>(”§qu_”2) (1)

where
1

(ov)nm & 5 / o (p,p)vffd>pd>p.
and (au)ngqu is the production rate and nequ is the LTE (local

thermodynamic equilibrium) abundance of X, X at temperature
T.



It is easy to see what the solutions of (1) look like. The relevant

timescales are the collision timescale, t-o, and the expansion
timescale, texp:

1 R
~ n{ov), texp ~ i
o If t-o << texp, then the rate equation is very stiff and the

solution is

—1
tcoll

n = Nequ (T)

o It it << texp, then the particles are collisionless and the
solution is

n o< R_‘?’.



So the relic abundance is

R?’(tf)

R3(t)
where tf is the 'freeze-out’ time defined by

ﬂ(t) ~ ﬂequ(tf)

teoll = texp-

Note that if the particles X are massive at tf,

my 3/2 m
ﬂequ(Tf) o (T—f) exp (—_
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Primordial Nucleosynthesis
e Stage 1: T >> 1MeV:

Weak interactions

n—+ve < p—+e
e++n <~ p1 Ve
Tt ":.:}" p__E'_I_FE’.

and EM interactions

et+et — YT

maintain all components in thermal equilibrium (gx = 10.75).
T he neutron-proton ratio in thermodynamic equilibrium is

3/2
() S



where

Q (mp — mp)cg = 1.29MeV
M, 936.6MeV, myp = 938.3MeV

e Stage 2: T' =~ 0.8MeV, freeze-out:

ow = 10_4T(kT/1MEV)2TT12
nowe ~ H at kT =~ 0.8MeV, (t=1s)

SO the neutron-proton ratio freezes out at
n ( 1.29) 1
—=exp|——) = —.
j) 0.8 5

If all of the neutrons end up bound into Helium (almost correct),
then the Helium abundance by mass is

Ampnpe _ 2(n/p)

= ~ 0.25.
mpng + 4mpnye 1 +n/p

Yhe =



e Stage 3: T~ 0.7 — 0.05MeV:

Fusion begins. But, there is a 'deuterium bottleneck’, because
deuterium has a low binding energy and is easily dissociated by
the blackbody radiation. Deuterium production is therefore de-
layed until blackbody photons are redshifted.
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Key Fusion Reactions

product: binding energy:
n+p—=D+y Deuterium (pn) 2.2 MeV
D+D=>He +n| 5 (p;:) 7.72 MeV
p+D—"He " +y
n+D—=T+y | '
D+D—=T+p ; Tritium (pnn) 8.48 MeV
n+He" =T+ p| ?
n+He "' —="He"™ +y
D +’He'*—='He'" + p
p+T—"He™" +v - “He (ppnn)  28.3MeV
D+T—"He" +n 82
‘He**+'He'"—"He'" + 2p|
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Sakharov criteria for generating baryon (lepton) number
asymmetry

e Need a physical process that violates baryon (lepton) number.

e Needs a physical process that violates invariance under C and
CP. (Necessary to ensure a different reaction (or decay rate) for
particles and antiparticles.)

e Needs a departure from thermal equilibrium (CPT requires
particle and antiparticles have exactly equal mass). In absence
of conserved numbers, chemical potentials are zero. Hence in
thermal equilibrium, the distribution functions of particles and
antiparticles are identical.



Appendix I. What is the origin of the source term in the
Boltzmann equation?

Assume a simple reaction:

Y — XX,
and assume Maxwell-Boltzmann statistics. The net production
rate of particles ¢ and  is

where dn = gd3p/(h3E).

If CP is conserved (T invariance) then

2 — 2 — 2



And if XX are in thermal equilibrium

EX) Ex B, E;
— = X ——— | ex ——= | = exX —— | eX — |,
IxIx p( kT D( KT PR )P\ TR )

since energy conservation requires Eyx + Ey = Ef,?,.;, -+ E;

So, the net production rate is

— / dﬂwdﬂE|M|2(f¢fE _ fﬁqufgqu)j

and if the cross-section varies slowly with momentum, we can
do the integrals giving the equation in the notes:

<U“”>(ﬂgqu - ”2)*




Appendix II: Why do we need C and CP violation for
baryogenesis?

If C is a symmetry, then every B violating reaction X — Y + Z
has the same rate as the C conjugate reaction:

(X —=Y+2)=N(X—-Y+2).
If this is true, then baryon number is conserved.

However, violation of C is not enough. Consider a baryon Vvio-
lating process that creates /eft-handed baryons X — qrqr. 1If CP
is a symmetry then the rates for this reaction is the same as the
CP-conjugate reaction X — drqr- If CP is conserved

M(X —qrqr) + T (X = qrar) =M (X = Grq) + T(X — GraR),
and so again, no net baryon number.

S0, we need violation of both C and CP.



