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WIMP Dark Matter

* Weakly interacting massive particles are
the most favoured DM candidate

e Occur in many models, including a wide
range of supersymmetric scenarios

e For CDM, freeze-out occurs when
particles are non-relativistic. Expect DM
in Galaxy to be moving at same speed as
baryons — about 220 kms!



The “WIMP miracle”
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Freezeout of dark matter
depends on mass and
annihilation cross-section.

Consider case for massive
WIMP, (non-rel) with weak
interaction cross-section



WIMP masses in range 100 GeV-1 TeV, with normal weak
interactions, naturally give dark matter densities in the required
range. These are exactly what are predicted by supersymmetry
models, and other BSM scenarios.

Mass of Dark Matter Particle from Supersymmetry (TeV)
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Signals for dark matter

Earth passing
through DM
wind with
seasonal
modulation
of velocity

June
WIMP Wind V” PP
—_—

Look for
collisions
between DM
particles and

detectors
December

Figure from Sheffield HEP group



DM detection principles
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Expect O(1) DM particles/litre near
Earth -> interaction rate expected to
be <1/year/kg of target.

Work deep underground to shield from
cosmic rays.

Measure recoil energy
as phonons and
jonization created in
collision between WIMP
and detector material.

Since v<<c, energy
release is small ->
require high sensitivity/
low noise detectors:
normally use cryogenic
temperatures to limit
noise.

Coherent scattering:

o « A for spin O target

o« J for spinJ



DM Backgrounds

* Electrons and photons from environment,
especially nuclear beta decays, gives

different ratio of ionization/phonons than
WIMPs

* Neutrons from cosmic ray showers and

nuclear fission — scattering same as for
WIMPs, but can shield and veto.



CDMS detector, Soudan, USA

Stacks of segmented
germanium detectors (230
gm):

-detect ionization by drifting
charge to surface in electric
field

- Phonons break Cooper pairs
in superconducting Al layer
on surface. Resulting heat
changes resistance, which is
then measured as a current
pulse.

Segmentation allows time of arrival of the two signals to
be measured, locating the region of detector which was
hit. Outer ring of detector read out separately to veto
events near edges. “Surface events” give reduced
ionization but faster phonon pulse.
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10 mK crysostat constructed of
radiopure copper to avoid background.
Lead shield from ballast of 18t
century French ship.

Polyethelyne shield to moderate
neutrons. Active muon shield.
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CDMS calibration data
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Neutron scatters

Timing of pulse shape removes
surface events - but still dominant
background, estimated at 0.6+- 0.1
events
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CDMS data
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Data from two different detectors: two signal events observed, but
not sufficient to claim signal. Used to set limit on DM cross-section.

http://cdms.berkeley.edu/0912.3592v1:pdf
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Single Ge crystal
operating with much
lower threshold than
CDMS.

Arrows show expected
nuclear levels.

Rise in rate below 1 keV
matches signal expected
for Wimp signal with a
mass of 7 GeV/c?



Residuals (cpdkg/keV)

Residuals (cpd/kgkeV)

Residualks (cpd/kg/keV)

DAMA/Libra results

24 keV
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arXiv:astro-ph/0307403v1

* Uses 100 kg scintillator
crystals to look for annual
modulation of event rate.
No background
subtraction. | | years of
data. 8.2 sigma effect.

Model independent
method.

Result claimed to be
incompatible with expected
dark matter rate — see eg

>55 papers on arxiv
proposing explanations!



Events (per 30 days)

Modulation of CoGeNT data
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Ratio of signals

Xenon detectors

e XENONI0 and ZEPLIN detectors use Xe liquid as detectors,
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producing scintillation light and ionization signals. Can locate
interaction point in liquid -> no surface events. Competitive
with CDMS but easier to scale up to large masses!?
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Summary of direct DM searches

WIMP-Nucleon Cross Section [cmZ]
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Pamela antimatter search

you.are heres

Look for antimatter flux from WIMP annihilation



~1.3m

PAMELA telescope

+

p (He,...)

TOF (81)

(CARD

TOF (S2)

(CAS)

TOF (S3)

~470 Kg / ~360 W

::_‘

Trigger, ToF, dE/dx

ANTICOINCIDENCE
(CAT)

NEUTRON
DETECTOR

* 81, S2, S3; double layers, x-y

* plastic scintillator (8mm)

* ToF resolution ~300 ps (S1-3 ToF >3 ns)
« lepton-hadron separation < 1 GeV/c

* $1.52.S3 (low rate) / $S2.S3 (high rate)

Sign of charge,
rigidity, dE/dx

Electron energy, |[*16.3X0/0.6L
dE/dx, lepton-

hadron separation |, geif trigger > 300 GeV / 600 cm? sr

* Permanent magnet, 0.43 T

*21.5cm?sr

* 6 planes double-sided silicon strip
detectors (300 pm)

* 3 pm resolution in bending view » MDR
~800 GV (6 plane) ~500 GV (5 plane)

+ 44 Si-x | W/ Si-y planes (380)

* dE/E ~5.5 % (10 - 300 GeV)

- 36 *He counters

- *He(n,p)T; E, = 780 keV

-1 cm thick poly + Cd moderator
- 200 ps collection



Pamela events
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Pamela signal
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- ATIC signal
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Excess of electrons at high
energy observed by balloon
experiment over Antartica.
Rate 200x expected from
WMAP DM density.
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Fermi data
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e Fermi large area telescope does not confirm
ATIC result.
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SUSY at the LHC

Spin O Spin 1/2

Multiplet
name

Quarks/
squarks

Leptons/
sleptons

Higgs/
higgsinos

The Minimal
Supersymmetric
Standard Model

R _ (_1)3(B—L)+2s
P
=+1 SM
=-1 SUSY

Spin 1/2 Spin 1

Gluino/gluon
Winos, W’s
Bino, B
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R-parity

R-parity conservation has important consequences for
experimental searches:

¢ any initial state must have R, = +1, so SUSY

particles must be produced in pairs. This requires
energies of twice the SUSY mass.

e Any SUSY particle decay must be to a state with R,
= -1, and so each final state contains another SUSY
particle.

eThe lightest SUSY particle (the LSP) must be stable.

e A stable LSP (unless very heavy) must be electrically
neutral and weakly interacting to have escaped

detection. This is just what is required for dark matter.



ATLAS studies at the LHC
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&f;AT LAS JetEventat2.36 TeV Collision Energy
Y 2009-12-14, 04:30 CET, Run 142308, Event 482137
_}5/. EX P E R I M E N T http://atlas.web.cern.ch/AtIas/puinc/lé:]/TDlSPLAY/eve\r:tC?html




Entries / 50 GeV

DATA/SM

Look for large missing energy
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Peak of M. distribution vs the SUSY mass scale for a set of 100
minimal SUGRA model parameters.

e Mg,sy is mass of the lighter of gluino or ug.
e Strong correlation -> spread of only 10%
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Each step in the chain is a two body decay.

The momentum of the outgoing particles is fixed in the rest frame of
the parent, and is only a function of the 3 masses.

m3,'p m1 mZ!p

y O .
Consider two successive 2-body decays in the rest
frame of particle 3:

m4!p”
) )
Invariant masses of m,p° g m, mo,p
pairs of particles given / R ‘ R
by masses and 6 only
Invariant mass distributions will show ms,P

“edges” at max and min allowed values.



Entries/4 GeV/ 1 b

40.11/45

0.679

99.66 + 1.399
-0.3882 + 0.02563
2.273 = 1.339

~0 ~hE T ~0
% =Vl — X
2 R ]
%2 / ndf
T | T T T E T | Prob
50 : Endpoint
Norm.
40 : Smearing

30

20

10

lllllllllllllllll

Of
-10:_IIIIIII|III|III|III|III|III|III|III|III_Tj
0 20 40 60 80 100 120 140 160 180 200
m(ll) [GeV]

The position of the edge depends
on the masses of the slepton and
the two neutralinos.
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Plot invariant mass of
lepton pairs

The leptons in the signal
must be of opposite sign
and from the same family,
since the slepton carries
the family information
down the chain. Most
background comes from
processes with unrelated
leptons.

eg: WW, or chargino pairs
create equal numbers of
uu, ee, ey and pe events.

Hence most background
can be subtracted using
opposite sign eu pairs.



ATLAS limits on MSSM SUSY
models — 2012 data

MSUGRA/CMSSM: tanf = 10, A0= 0, u>0
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LHC constraints on DM

* With mass constraints of this form, can
estimate mass of missing neutralino.

¢ Infer dark matter density from LHC
measurements of mass and coupling strength:
compare to astro data.

[Error on Q_h° =~ 3-9% with 300fb™ of datal

Cf Estimated error from Planck of ~0.42%
(both estimates are model dependent)



Summary

* Dark matter experiments are starting to
produce constraints on particle physics
models.

e First hints of signals, still controversial.

e LHC will explore large areas of SUSY
parameters.

* Require concordance between direct
observations, and cosmology before we
can claim to understand.



