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Abstract. With the publication of the Hipparcos cat-
alogue, astrometric data of unprecedented quality and
quantity has become available, providing parallaxes, po-
sitions and proper motions free from systematic errors
down to a level of at least 0.1 mas and 0.1 mas y−1.
The Hipparcos catalogue, however, contains not only these
“ready-to-use” positions, parallaxes and proper motions,
but also intermediate astrometric data or abscissa residu-
als, which are the data from which the astrometric solu-
tions were obtained. These data allow alternative solutions
to be made for the astrometric parameters, for example,
through the use of additional information. When combin-
ing data from stars in a small area on the sky, it becomes
possible to account for correlations that exist between the
abscissa residuals for stars measured on the same great
circle. This is relevant for stars in open clusters and the
Magellanic Clouds, where such correlations will be very
frequent. The intermediate data also provide the possibil-
ity to add external constraints to an astrometric solution,
such as an approximate but small parallax value, one that
would have been too small to measure with Hipparcos. In
that case the parallax can be fixed at the estimated small
value, giving a better constrained solution for the proper
motion. Similarly, when for a group of stars the absolute
magnitudes are linked through a period-luminosity rela-
tion or by being all closely the same, as for RR Lyrae
stars, such a condition can be superimposed on the paral-
lax solution for all stars in this group, providing a distance
scale calibration well beyond the range of direct parallax
measurements. An example of how to use the data for so-
lar system objects, which are provided only in the form of
intermediate astrometric data, is shown.
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1. Introduction

A full description of the Hipparcos data products and
the reductions that led to these products has been pre-
sented in the Hipparcos and Tycho catalogues (ESA 1997).
References made in the present paper to “Volumes” refer
to volumes of that publication. In brief, Volume 1 pro-
vides a description of the data contents of the catalogue
and Volume 3 descriptions of the Hipparcos data reduction
and data verification processes. Volume 4 does the same
for the Tycho data reductions. Volume 2 provides a de-
scription of the operations and is of little relevance to the
present paper. A review of the data reduction procedures
and their connections with the published data has been
presented by van Leeuwen (1997), and will be referred to
as VL97.

The Hipparcos catalogue is more than a “simple” cat-
alogue of positions, parallaxes and proper motions. It also
contains the data that were used to construct these quanti-
ties: the Intermediate Astrometric Data or abscissa resid-
uals (Vol. 1, Sect. 2.8) – for further treatment of single
stars; the Transit Data (Vol. 1, Sect. 2.9) – for further
analysis of double stars; Solar System Objects abscissae
(Vol. 1, Sect. 2.7); and the Hipparcos Epoch Photometry
Annex (Vol. 1, Sect. 2.5) (records of the fully calibrated
mean signal intensity and modulation amplitude). All of
these are available as ASCII files on the Hipparcos CD-
ROM set and can be used either on their own – for a
better understanding of the astrometric data – or used in
connection with ground-based observations to derive al-
ternative or general solutions for individual objects or for
groups of objects.

The abscissa data formed the basic astrometric mea-
surements for single stars, where we define a single star as
a star for which the modulated signal was not significantly
disturbed by the presence of a component. The abscissa
data were collected over intervals set by the orbital period
of the satellite (10.6 hours) and referred to a reference
great circle, defined for each orbital period by the position
of its pole in the final International Celestial Reference
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System (ICRS). The abscissae are one dimensional posi-
tional measurements, meridians of the great circle, where
the position of the meridian is very well established (to
an accuracy of a few mas), but the position of the object
along the meridian is not known (except of course for the
a priori knowledge of the positions of objects which were
used in obtaining the observations). The abscissae, as ob-
served over the length of the mission, were fitted with a
set of astrometric parameters (usually position, parallax
and a linear proper motion). Differences between observed
and the predicted abscissae based on such models are re-
ferred to as abscissa residuals, and were made available in
the Intermediate Astrometric Data file on the Hipparcos
CD-ROM. For solar system objects the data were only
presented in the form of abscissa data. The present paper
focusses on when and how to use these intermediate as-
trometric data, for individual as well as groups of single
stars.

Two reasons led to the decision to release the ab-
scissa data: firstly, a small number of solutions provided
in the final catalogue are not satisfactory, in particular
when proper motions were fitted with a first or even sec-
ond order function of time, or when a so-called stochastic
solution had to be applied (see Sect. 2.4); secondly, cor-
relations between errors on the abscissa estimates exist
between measurements on the same reference great circle,
most importantly when separations are less than 2-3 de-
grees (see Vol. 3, Chap. 17 and Sect. 2.2). The publication
of the intermediate astrometric data has made it possible
to incorporate the original Hipparcos abscissa data in a
new solution when, at a later stage, additional observa-
tions clarify or constrain the nature of the object. Their
publication also allows a proper determination of mean
proper motions and parallaxes for stars in clusters and
in the Magellanic Clouds, by allowing to fully take into
account existing correlations.

The abscissa data allow for a complete reconstruction
of the Hipparcos solutions for single stars (see Sect. 4.
Thus, if for some reason at a later stage a particular ab-
scissa measurement is considered suspect, then the solu-
tion can be repeated without this measurement. Similarly,
abscissae rejected for the published solution are still in-
cluded in the data file and can be recognized from the
records and reintroduced if appropriate. If for some rea-
son the parallax or the proper motion of an object is
more accurately known already, a new solution can be
obtained incorporating this information. In nearby star
clusters, ground-based studies have over the years pro-
vided differential proper motions with precisions ten times
higher than Hipparcos and could be used as external con-
straints on a new solution. Incorporating this kind of data
is, however, not simple due to the distortions that appear
to be present in such proper motion determinations (see
e.g. Tian et al. 1996).

The present paper shows examples of how the inter-
mediate astrometric data can be used in alternative mod-

els for the astrometric parameters of individual objects
or groups of objects. These models are of two kinds: con-
strained solutions, where one or more parameters are sup-
plemented with or replaced by information obtained from
other sources than the Hipparcos Catalogue (Sect. 4); and
“combined solutions”, where parameters for a selection of
stars are solved for in one solution while, when necessary,
removing correlations between abscissa residuals (Sect. 6).
The latter method may also include constrained param-
eters, when part of the astrometric parameter solutions
for a group of stars is replaced by the solution for a few
common parameters, shared by all stars in that group. A
simple example is the stars in the LMC. Instead of solving
for each star a parallax and a proper motion, it becomes
possible to eliminate the parallax from the solution (a par-
allax of 0.02 mas could not be detected by Hipparcos), and
solve for a collective proper motion for all LMC stars to-
gether (see e.g. Kroupa & Bastian 1997). The possibility
to combine astrometric solutions for groups of stars, pro-
vides, in addition, the means to detect intrinsically weaker
signals in luminosity calibrations.

A brief review of those aspects of the Hipparcos data
that have an immediate bearing on the use and under-
standing of the intermediate astrometric data is presented
in Sect. 2. This is followed by Sect. 3 explaining the in-
formation provided in the intermediate astrometric data
file, and the proper implementation of these data. Sect. 5
presents methods for analyzing data on the solar system
objects. A more extensive review is presented by VL98,
and in Volume 3.

2. Overview of the Hipparcos Astrometric data

This section provides a summary of data reduction aspects
more fully described in Volume 3, primarily in Chapters
5, 9, 11, 14, 16 and 17; in fact, almost any chapter in
Volume 3 has some bearing on the results used here.
Many details can also be found in VL98. The emphasis
will be on understanding the properties of the Hipparcos
Intermediate Astrometric Data or abscissa records. There
are four main aspects:

1. the reduction of the photon-counts (Sect. 2.1);
2. the great-circle reduction (Sect. 2.2);
3. the sphere reconstruction (Sect. 2.3);
4. the merging and determination of the astrometric pa-

rameters (Sect. 2.4).

In addition, Sect. 5 provides some background to the way
the solar system data were obtained and are presented in
the catalogue.

A very important aspect of the Hipparcos data re-
ductions was the use of two independent data reduction
consortia, NDAC and FAST (see Perryman et al. 1997),
each providing what they considered their best final re-
sults. The results from the two consortia were merged to
form the final catalogue.
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There were two kinds of errors affecting the consortia
results: errors due to photon noise on the original mea-
surements, and errors due to inadequacies in the calibra-
tion methods (instrument modelling) applied by the two
groups. The first of these was the same for both sets of con-
sortia results and showed as a correlation between residu-
als with respect to the accepted solution. Errors resulting
from instrument modelling were considered largely uncor-
related due to the different reduction methods used by
the two groups. However, some correlation may be ex-
pected for these errors too. By combining the results from
the two consortia the influence of the uncorrelated (in-
strument modelling) errors was reduced. This was clearly
observed from the parallax results obtained in the merged
solution, which showed an improvement relative to the in-
dividual consortia results.

Another important aspect of the Hipparcos instrument
was the scanning law and the two entrance pupils, project-
ing images on the same focal plane, observing only objects
selected from the pre-defined Hipparcos Input Catalogue
(ESA 1992). These provisions made it possible to mea-
sure very precisely large angular distances on the sky and
allowed for the determination of a rigid optical reference
frame and the measurement of absolute parallaxes. This
all-sky rigidity and reliability makes it possible to combine
the intermediate astrometric data from all parts of the sky
in a single solution into an essentially distortion free all
sky (or small field) solution. The two entrance pupils did
imply, however, that occasionally observations were dis-
turbed by an image from the other field of view.

2.1. The photon-count reductions

The main signal of the Hipparcos observations was ob-
tained from the sampling of the light of stellar images
passing over a modulating grid of 2688 lines. The sam-
pling used a photon counting image dissector tube (IDT),
which used a small sensitive area (30 arcsec diameter, the
instantaneous field of view) that could follow a stellar
image during its transit through the 0.9 by 0.9 degrees
field of view and also be moved very quickly from one ob-
ject to another. Thus, almost simultaneous observations
were obtained for up to 10 stars at any one time. The
modulated signal for a single stellar image could be accu-
rately described by a zero-level and first and second har-
monic modulation, with well calibrated relations between
the amplitude ratio and phase difference of the first and
second harmonic. The phase v of the modulated signal
(either based on the first harmonic only, as was done by
NDAC, or based on the first and second harmonic, as was
done by FAST) provided a transit time estimate across a
reference slit: the fundamental input for the astrometric
measurements. Differences between the two methods were
largely eliminated from the final results through the cal-
ibrations of instrument parameters, but do reflect in dif-
ferences of accuracies between FAST and NDAC abscissae

(see VL98). The transit times were related to positions on
the sky through the reconstructed satellite attitude. The
position of the reference slit with respect to which the
phase was determined was derived from the satellite atti-
tude and the a-priori or updated catalogue position. The
astrometric data was further reduced by the Great Circle
Reduction process to one measurement (abscissa) per or-
bital period (see next section).

The mean signal level and modulation amplitude were
processed in the photometric reductions and provided the
data for the Hpdc and Hpac magnitudes respectively. The
reduced photometric data were combined in field transit
magnitudes, which are presented in the Hipparcos Epoch
Photometry Annex (HEPA) and the Hipparcos Epoch
Photometry Annex Extension (HEPAE).

The modulated signal could be affected by images close
enough to the target image to be visible at the same time
by the IDT. Such images could be either due to duplicity of
the star or to accidental superimposition of an image from
the other field of view. The composite image would still fit
the same modulation model, but the relations between the
mean intensity level and the modulation parameters were
altered. The modulation phases were no longer directly
linked to the transit time of an image, and special pro-
cessing was required to handle observations of the double
and multiple stars, while data associated with accidental
superimpositions had to be discarded. A related source
of signal disturbance was caused by stray light, resulting
from very bright stars at larger distances (up to a few
hundred arcsec). These effects were corrected for approxi-
mately. Exact corrections were impossible due to the very
limited knowledge of the sensitivity of the IDT instanta-
neous field of view at larger distances from its centre.

Information on recognized accidental superimpositions
by one or more images from the other field of view
is provided in the Hipparcos Epoch Photometry Annex
Extension file, HEPAE. This information can be related
to the data in the Intermediate Astrometric Data file
through a comparison of epochs: the astrometric refer-
ence epoch 1991.25 corresponds to photometric epoch
JD 2448349.0625. It has to be realized, however, that in
combining field transit data to abscissae individual data
points that were affected by spurious images from the
other field of view were in many cases rejected.

A further source of signal disturbance, although for
only a very small number of objects, was due to the
presence of planetary nebulae around some stellar im-
ages. These could disturb the signal depending on the
scan direction in a way that is difficult to recon-
struct or interpret. The average effect was a relative
decrease of the modulation amplitudes of the signal,
which can be recognized from the HEPA/HEPAE files by
comparing the magnitudes derived from the zero-level in-
tensities (dc-magnitudes in the HEPA file) with the simul-
taneously derived magnitudes from the modulation ampli-
tude (ac-magnitudes in the HEPAE file). Disturbance by
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a planetary nebula leads to too bright dc-magnitudes in
comparison with the ac-magnitudes. Deviations from cir-
cular symmetry led to distortions on the phase estimates,
and few of these objects have reliable astrometric solu-
tions.

Detailed analysis of the first and second harmonics
(phases and amplitudes) in the modulated signal led to the
discovery of several thousands of double stars. Signals for
double stars were processed separately by both NDAC and
FAST, but only FAST carried all these signals along into
the great-circle reductions. For this reason, only FAST ab-
scissae are available for most of the double stars. It should
be realized, however, that, depending on the magnitude
difference and the separation, the interpretation of these
double star abscissae can often be ambiguous due to the
complexity of the signal. The Transit Data file (Vol. 1,
Sect. 2.9) has preserved the case history files for 35 535
known or suspected double or multiple stars as obtained
by NDAC, permitting a revised interpretation of these
data too (Vol. 1, Sect. 2.9).

2.2. The great-circle reductions

The aim of the great-circle reductions was to obtain from
the modulation phases vi, obtained from the IDT signals
over a period of 4 to 8 hours, precise abscissae on a refer-
ence great circle (van der Marel & Petersen 1992). In the
process the instrument parameters, describing the relation
between a position on the sky and a position on the mod-
ulating grid, were calibrated. The most noticeable of the
instrument parameters was the basic angle between the
two fields of view. The great-circle reduction process used
star positions, initially taken from the Hipparcos Input
Catalogue (ESA 1992) and later from preliminary mission
results, together with orbital parameters for the Earth and
the satellite and the reconstructed attitude of the satellite.
This information was used to transform the phases v to the
proper slit positions on the modulating grid, thus obtain-
ing preliminary abscissae from the phase measurements.
The great-circle reduction process determined the scan
phase of the instrument as a function of time, and relative
to this scan-phase the averaged star abscissae. Between 5
and 90 measurements could contribute to a single abscissa
determination. The great-circle reduction process can be
summarized by the following equation (which was applied
to every single scan-phase determination):

∆Gik =
∂Gik

∂vi
∆vi +

∂Gik

∂ψk
∆ψk +

∂Gik

∂d′
∆d+ εik, (1)

where Gik is the grid coordinate of the star (the mean po-
sition on the grid during the observation as derived from
its apparent position, the scan phase estimate and the
reconstructed satellite attitude). ψk is the along-scan at-
titude correction and d is the vector of instrument pa-
rameters. The very smooth motions of the satellite (ex-
cept at times of thruster firings) allowed for the use of

cubic splines to fit locally the corrections ∆ψk to the orig-
inal star-mapper-based attitude reconstruction, and thus
to reconstruct very precisely the abscissae along the great
circle. However, the attitude corrections used the same
abscissa data, and as a result there are correlations be-
tween the errors on the final abscissae and the attitude
corrections. This propagated into correlations of abscissae
errors for stars affected by the same attitude errors. Due
to the two fields of view, abscissae errors for stars very
close together on the sky, as well as for stars separated
by 58 degrees (the basic angle) and multiples thereof, are
found to be correlated (see Fig. 1). A preliminary study of
these correlations was presented in Volume 3, Chapter 17.
The correlations were re-investigated at a higher spatial
resolution and taking into account the projection of the
stellar separation to an abscissa difference. Also investi-
gated was the influence of the length of the time interval
covered by the data included in each great-circle reduc-
tion run. It was expected that correlations would be much
stronger for short sets that for long sets. As the actual
length of the data stretches was not available, the number
of stars per great circle was used instead as an indica-
tor of long and short sets. There were other aspects too,
that affected the quality of the great-circle results, but
these are difficult to reconstruct from the published data.
They concern gaps in the data due to occultations (a ma-
jor problem for great circles with small inclinations with
respect to the ecliptic), and problems with the attitude re-
construction due to high background levels. Most of these
problems reflect in individual abscissa accuracies.

Only stars with a standard 5-parameter solution were
used in the determination of the correlations. On each
great circle there are mostly between 900 and 2000 such
stars (extremes run from 27 to 2110 stars for NDAC, and
295 to 2027 stars for FAST). Only in one situation were
these correlations both significant and able to accumulate
and affect a discussion of Hipparcos astrometric data: for
stars in a small field (a few degrees diameter, like an open
cluster or the Magellanic Clouds). For any other separa-
tion the correlation between measurements for a pair of
stars seldom repeated themselves over the mission, and
the cumulative effect was very small (stars at a separation
of 180◦ also accumulated a correlation, but at that sep-
aration the correlations were rather small). The strength
of the correlations diminished when the time span cov-
ered by the data became longer. The increase in data de-
creased the degrees of freedom for the along-scan attitude
improvements. The actual time span covered by each RGC
is not recorded in the data files, but reflects in the number
of stars included in each RGC. Figure 2 shows the cor-
relations for short separations and for different ranges in
dataset length. In particular for NDAC the increase in the
correlations was strong for shorter datasets, reflecting one
of the differences in the data reduction approach. The cor-
relations were fitted with a polynomial in even powers of
s, the abscissa separation measured in units of 4 degrees.
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Fig. 1. The correlation coefficient of the abscissa residuals, as a function of the separation on the reference great circle, for all
datasets. The NDAC curve can be distinguished from the FAST curve by its lower minima, and higher maxima, differences that
become more pronounced as datasets get shorter

Table 1. Functional representations of the correlation coefficients at short abscissa distances for different lengths of datasets.
The lengths of the sets are indicated by n5, which is the number of abscissae residuals accepted from 5-parameter solutions
(Col. I in Table 2)

< n5 > Consort. 1 s2 s4 s6 s8 s10 s12

600 FAST 0.5931 −0.7801 0.7846 −0.4452 0.1313 −0.0189 0.00105
NDAC 0.5678 −0.7292 0.5518 −0.2545 0.0653 −0.0085 0.00044

900 FAST 0.3290 −0.6231 0.5589 −0.2817 0.0771 −0.0106 0.00058
NDAC 0.4152 −0.7237 0.6163 −0.3050 0.0836 −0.0117 0.00064

1200 FAST 0.2423 −0.5591 0.5266 −0.2689 0.0741 −0.0103 0.00056
NDAC 0.2962 −0.5792 0.4721 −0.2229 0.0594 −0.0081 0.00044

1500 FAST 0.2041 −0.4931 0.4652 −0.2343 0.0636 −0.0087 0.00047
NDAC 0.2362 −0.4962 0.4103 −0.1925 0.0506 −0.0068 0.00037

1800 FAST 0.1860 −0.4747 0.4742 −0.2500 0.0701 −0.0099 0.00054
NDAC 0.2006 −0.4518 0.3961 −0.1920 0.0512 −0.0070 0.00038

2100 FAST 0.1790 −0.4837 0.4964 −0.2632 0.0735 −0.0102 0.00056
NDAC 0.1759 −0.3913 0.3703 −0.1928 0.0538 −0.0075 0.00041

The fits only cover the separation range 0 to 6 degrees,
i.e. s ranging from 0 to 1.5. The results of those fits are
summarized in Table 1. Table 2 (here only represented by
an extract of the complete file, which is available electron-
ically via the CDS) provides for each reference great cir-
cle the numbers of accepted and rejected abscissae. These
data can also be used as an indicator of (the very few) gen-
erally unreliable reference great circles, by comparing the
numbers of accepted and rejected observations. Section 6
shows how these correlations can be incorporated in a de-
termination of a common proper motion or parallax for a
group of stars with small separations on the sky.

The result of the great-circle reductions was a set of
2341 great circles. They cover a time-span of 2768 orbits
or 1230 days. Not every great circle was reduced by both
consortia. Due to a tape delivery problem that was de-
tected too late, the NDAC reductions are not available
for 4 RGCs towards the end of the mission, while in a
few cases an RGC is missing in the FAST reductions due
to problems with the data reductions. In most cases this
concerned RGCs with small numbers of stars. Instrument
parameters were not solved for when numbers of stars were
low. They were interpolated from neighbouring, better de-
termined solutions. For 2247 RGCs data is available from
both consortia; for 15 RGCs data is only available from
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Table 2. Numbers of abscissa residuals per orbit, split into three types of solutions: (I) type 5; (II) types 7, 9 and X; and (III)
types C, V, O and −. In the first two cases the numbers of accepted and rejected residuals are given. For the third case only
the number of abscissae was available. Only an extract of the Table is presented here. The full version is available in electronic
form through the CDS

NDAC FAST
I II III I II III

Orbit accep. rejec. accep. rejec. accep. accep. rejec. accep. rejec. accep.
(n5) (n5)

1 1364 6 48 2 121 0 0 0 0 0
48 1270 6 45 0 91 1169 3 42 0 129
50 1393 0 64 2 104 789 0 41 0 100
51 958 1 38 0 74 965 1 40 0 142
52 1207 9 64 0 110 1051 3 58 0 161
53 1160 2 57 0 90 944 2 50 0 128
54 1200 6 54 0 93 1156 4 56 0 163
55 1245 7 56 0 102 1218 3 56 0 169
56 1282 7 73 1 114 1175 4 72 0 180
57 1400 3 70 0 112 896 4 51 0 119
59 1166 27 50 1 93 860 174 41 5 130
60 959 3 36 0 83 0 0 0 0 0
63 1314 8 64 0 129 1325 3 66 0 195
64 1475 4 59 0 115 1461 4 60 0 192
65 1497 5 51 0 136 981 3 35 0 162

the FAST consortium; while for 79 RGCs data is only
available from the NDAC consortium.

2.3. The sphere solution

The main task for the sphere solution (Vol. 3, Chap. 16)
was to establish reference zero points for all reference great
circles, and to remove or calibrate any features left be-
hind by the preceding processing. Although, as part of the
sphere reconstruction, astrometric parameters were calcu-
lated, these are not the parameters presented in the cat-
alogue. They were used to check the consistency between
the solutions of the two consortia and to detect any grid-
step ambiguities left over from the great-circle reduction.
The result of the sphere reconstruction was, therefore, the
original great-circle reduction data, with calibrated zero
points and corrected systematic defects.

A comparison between the final Hipparcos and Tycho
results seems to indicate the presence of grid-step ambigu-
ities for 57 stars in the final catalogue (Vol. 4, Chap. 11).
These stars can be solved for again by using the Tycho
data as starting points and allowing corrections of multi-
ples of ±1.2074 arcsec on some or all of the abscissae.

2.4. Merging and astrometric parameter determination

Before any merging of data took place, the results from
the two consortia had to be rotated to a common refer-
ence frame. This was done through the use of orthogo-
nal rotations in positions and proper motions. As a first

step, the formal errors on the FAST and NDAC data
were investigated as functions of magnitude and quoted
errors. The quoted errors were adjusted statistically to
give the expected unit weight variances. Next, the cor-
relation between the FAST and NDAC abscissa residu-
als were determined and applied. Astrometric solutions
were made using the abscissae obtained by both consor-
tia by incorporating the correlation coefficients. All solu-
tions were tested for the necessity to allow a non-linear
proper motion. In this process apparently outlying resid-
uals or pairs of residuals were removed, and these can
be recognized as such in the abscissa records. Solutions
were accepted as either the standard 5-parameter model
(two positional parameters, parallax and two proper mo-
tion parameters), the 7-parameter model (proper motion
changing linearly with time) or in exceptional cases the 9-
parameter model (proper motion changing quadratically
with time). When none of these models provided an ac-
ceptable solution, and the star was not recognized as a
double star, a so-called stochastic solution (indicated by
“X”) was applied. In this solution, the 5-parameter model
was implemented to the observed abscissae, but with the
estimated errors on these abscissae artificially increased
by adding quadratically “cosmic noise” until a satisfactory
solution was obtained. The level of “cosmic noise” added
is preserved in the DMSA part X, described in Sect. 2.3 of
Volume 1. Any such solution has to be treated with great
care. Likely interferences causing this “cosmic noise” are
orbital motion (Bastian & Bernstein 1995; Bernstein 1997)
and the presence of a planetary nebula. In all these cases
the information provided in the Intermediate Astrometric
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Fig. 2. The abscissa residuals correlation coefficient for small
separations in data sets of different lengths. Top: short
datasets; middle: medium length data sets; bottom: long
datasets, as defined in Table 1. Crosses represent FAST data,
open squares represent NDAC data. Also shown are the fits as
given in Table 1

Data file allows for a full reconstruction of the solution and
its covariance matrix through the mechanism described in
Sect. 3. Stars with solutions of type “O” (orbital solu-
tions) or “-” (no astrometric solution) may also use the
abscissae records. This is not the case for two other types
of solutions, indicated with “C” and “V”. These represent
a component solution and a “variability induced mover”
respectively. The latter type stands for a small number
of objects where duplicity was inferred by a photocentric
motion caused by the variability of one of the components.

Finally, all results were transformed to the
International Celestial Reference System (ICRS).
This transformation was based mainly on very high
accuracy radio positions and proper motions for a small
set of radio stars (see Vol. 3, Chap. 18 and Kovalevsky
et al. 1997).

3. The intermediate astrometric data or abscissa
residuals

3.1. The general solution

The details of the intermediate astrometric data file are
described in Volume 1, Sect. 2.8, the file itself is avail-
able on disc 5 of the ASCII CD-ROM set. The file con-
tains the data from which the astrometric parameters for
single stars, as presented in the main catalogue, were de-
rived through the fitting of one of the models described in
Sect. 2.4. The model used is indicated for each star, both
in the main catalogue and the intermediate astrometric
data file.

A model fitted to the abscissae is described in the form
of the expected changes in the abscissa positions, vi, as
a result of changes in each of the model parameters aj .
Collecting all abscissa residuals in a vector v, the following
relation is obtained:

∆v =
n∑
j=1

∂v

∂aj
∆aj + ε, (2)

which is solved through minimizing the χ2, the sum of the
squares of the residuals:

χ2 =

∆v −
n∑
j=1

∂v

∂aj
∆aj

′V−1

∆v −
n∑
j=1

∂v

∂aj
∆aj

 , (3)

as a function of the parameter corrections ∆aj . V is
the covariance matrix of the abscissa residuals. In the
Hipparcos Catalogue the standard errors on the parame-
ters have been calculated assuming the predicted χ2 value,
i.e. using an assumed standard error for the solution of
1.0 rather than the observed value, which may be larger
or smaller than 1.0. In the presence of the variance ma-
trix U = V−1, the minimization of χ2 results in k = 1, n
equations of the type:
n∑
j=1

(
∂v

∂ak

)′
U

(
∂v

∂aj

)
∆aj =

(
∂v

∂ak

)′
U∆v, (4)

which constitute the so-called normal equations. The ma-
trix U is symmetric and can be factorized as:

U = T′T, (5)

where T is a lower triangular matrix (see e.g. Bierman
1977). The matrix T is called the square root of U, and
can be obtained using e.g. the Cholesky decomposition
algorithm, as described by Bierman. After replacing U by
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T′T and some reorganization the following equations are
obtained (k = 1, n):
n∑
j=1

(
T
∂v

∂ak

)′(
T
∂v

∂aj

)
∆aj =

(
T
∂v

∂ak

)′
(T∆v) . (6)

Thus, by multiplying the left- and right-hand sides of the
observation equations, as defined by Eq. (2), by the ma-
trix T, which is the Cholesky square root of the inverse of
the covariance matrix V, a set of de-correlated and prop-
erly weighted observation equations is obtained, ready to
be incorporated in the traditional least-squares solution.
Note that the square root of a matrix is not unique, and
therefore different ways exist to de-correlate the same set
of observation equations. Also, when the covariance ma-
trix is diagonal, the square root is too, and the multipli-
cation of the observation equations reduces to a straight
forward weighting by the inverse of its standard error for
each observation.

3.2. The covariance matrix

The observation equations for a single star consist in fact
of two sets of correlated observation equations, one set
from each consortium. Data obtained for observations on
reference great circle k by FAST will be indicated by Fk,
and for NDAC by Nk. The counter i (or j) refers to an
observation equation independent of its origin. The co-
variance matrix V for a single star solution is built up as
follows. The diagonal elements are given by:

Vii = σ2
Nk
, Vjj = σ2

Fk
(7)

for observation i obtained by NDAC and observation j
obtained by FAST. If two observations i and j originate
from NDAC and FAST reductions on the same reference
great circle k, additional off-diagonal elements have to be
added to the covariance matrix, representing the correla-
tion between these observations:

Vij = Vji = qNFkσNkσFk , (8)

where qNFk is the correlation coefficient between the FAST
and NDAC reduction results for orbit number k. The val-
ues of qNFk have been determined empirically from the
FAST and NDAC abscissa residuals as function of magni-
tude, time and the estimated standard errors on the ab-
scissa by FAST and NDAC and are provided in the ab-
scissa records.

When only these consortia correlations are considered,
the correlations between observations can be incorporated
in the observation equations by multiplying pairs of cor-
related observations equations with the Cholesky square
root of the inverse of their covariance matrix:

T =

 1
σFk

0
−qNFk

σFk

√
1−q2

NFk

1

σNk

√
1−q2

NFk

 , (9)

where the first equation is assumed to originate from
FAST, and the second from NDAC. The resulting pair

of observations are uncorrelated and properly weighted,
and can be treated as any other observation equations in
a least squares solution. It is clear that, if the correlation
coefficient qNFk is equal to zero, Eq. (9) reduces to a sim-
ple scaling of each equation by the inverse of the square
root of the variance of the standard error on the observa-
tion it represents.

3.3. Astrometric parameter models

The abscissa file provides ∂v
∂ai

for the solution of the five
astrometric parameters: corrections to the mean position
(dα cos δ, dδ), the assumed parallax (dπ) and the assumed
linear proper motions (dµα cos δ, dµδ). Provisions have
also been made for variable proper motions, the so-called
7- and 9-parameter solutions (see Sect. 2.4 and Vol. 1,
Sect. 2.8). The information for the construction of the co-
variance matrix V (standard errors and correlation coef-
ficients) is included in the abscissa records (fields IA9 and
IA10 in Table 2.8.3 of Vol. 1).

The abscissa residuals presented in the intermediate
astrometric data file are given relative to an implementa-
tion of the five astrometric parameters given in the header
records. These five parameters may be part of a more
complicated solution, such as a 7- or 9-parameter solution
or an orbital motion solution. In these cases the abscissa
residuals were obtained through implementing only the
first five parameters of the solution, as given in each header
record. In the 7- and 9-parameter solutions the first- and
second-order time dependence of the proper motion were
referred to a reference time such that the effect of these
parameters on the basic 5-parameter model would be very
small. This leads to the following results:

• In case the original solution was a 5-parameter solu-
tion, the proper application of a 5-parameter solution
to the residuals must give negligible corrections to the
astrometric parameters (only rounding-off errors), and
reproduce the standard errors on those parameters and
their covariances as given in the main catalogue;
• In the case of 7- or 9-parameter or orbital motion solu-

tions, the application of the original solution must pro-
duce negligible corrections for the first 5-parameters,
and reproduce the remaining parameters, together
with all standard errors and the full covariance matrix.
When applying a 5-parameter solution to the residuals
of the partially implemented 7- or 9-parameter solu-
tion, the expected results are small corrections to the
5-parameters and an increase in the standard error of
the solution.
• In the case of a stochastic solution (“X” in field H59

of the main catalogue, and in field IH8 in the header
records of the intermediate astrometric data), the orig-
inal solution can be recovered by adding in quadrature
a “cosmic noise” to the standard errors of the abscis-
sae, and applying the standard 5-parameter solution to
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the result. The level of the “cosmic noise” was adjusted
such as to give the expected χ2 for the solution.

In the case of double star solutions (types “C” and
“V”) the abscissa residuals (often only given for the FAST
data) are mostly of little meaning, and should not be used.
For these stars the Transit Data (Vol. 1, Sect. 2.9) should
be used instead.

4. Individual solutions

Most individual solutions of the 5-parameter type are un-
likely to be improved upon. Exceptions are stars for which
it can safely be assumed that their parallax is much too
small to be measured by Hipparcos, in which case the
parallax can be set to zero. This could be relevant when
a relatively large correlation exists between the parallax
and proper motion determination. In order to do so, all
abscissa residuals are to be corrected for the difference be-
tween the determined parallax and the assumed parallax:

∆v′ = ∆v −
∂v

∂π
∆π, (10)

where ∆π = πnew−πold. The new set of residuals are then
solved using the mechanism described in Sect. 3 for only
four parameters ai: position and proper motion.

The situation is much more complicated when a very
precise proper motion is available from an external source.
The problem is that before such a constraint can be in-
corporated, it needs to be represented in exactly the same
reference frame as the Hipparcos data. The same applies
when positions are obtained on photographic plates at a
different epoch than the Hipparcos data. The transfor-
mation to the Hipparcos reference frame can only be ob-
tained if a sufficiently large number of objects is available
for the determination of the transformation parameters,
e.g. when the measurement has been obtained in a suf-
ficiently well determined reference frame, and has been
corrected for any systematic differences between that ref-
erence frame and the Hipparcos reference frame, both in
positions and in proper motions. In general, the uncer-
tainty of the systematic errors will inhibit incorporation
of proper motion data. Here, however, the Tycho cata-
logue can be of assistance in some cases. With a much
higher density of stars than the Hipparcos catalogue, the
Tycho positions can provide a sufficient number of refer-
ence points to determine accurate plate transformations if
plates were obtained at an epoch close to the mean Tycho
epoch. For clusters like the Pleiades and Praesepe one can
use the fact that the internal proper motions of the clus-
ter members are very small, and that by using only cluster
members, larger epoch differences can be allowed.

Another possible application is for stars with orbital
motions, where prolonged observations can provide addi-
tional measurements. It is likely that some of the 7- and
9-parameter solutions refer to orbital motions over a time-
span much longer than the 3.5 years of the Hipparcos

Fig. 3. Definition of the abscissa offset v for a predicted posi-
tion (αm, δm), with respect to the catalogue position (α0, δ0)
and RGC orientation θ

mission. The same applies to some stochastic solutions,
where the orbital motion time-scale could be shorter than
3.5 years. Further observations may constrain the possi-
bilities of non-linear proper motion fits. It will be difficult,
however, to obtain positional measurements with accura-
cies comparable with the Hipparcos data. In such cases,
the addition of radial velocity data may sometimes help
resolve the solution of the Hipparcos data.

Important in the construction of orbital parameter so-
lutions is the definition of the parameters ai and their
derivatives. This problem is very similar to that of the so-
lar system objects, described in the next section, except
that the angle θ (Fig. 3), defining the local direction to
the equatorial pole, still needs to be calculated. Although
it can be derived from the positions of the star and the
pole of the reference great circle, it is far easier to ob-
tain the angle θ directly from fields IA3 and IA4 (Vol. 1,
Table 2.8.3) in the intermediate astrometric data file:

tan θ = IA3/IA4, (11)

while the epoch of observation is taken from the Reference
Great Circle file (fields IR2 and IR5 in Vol. 1, Table 2.8.1)
or from:

epoch− 1991.25 = IA6/IA3 = IA7/IA4. (12)

Using the same mechanism as employed for solar system
objects, described in the next section, further models can
be developed and implemented.

5. Solar system objects

The solar system objects observed by Hipparcos (48 mi-
nor planets, two of Jupiter’s moons, Callisto and Europa,
and one of Saturn’s moons, Titan), do not lend themselves
for a simple parametrized representation. They could only
be presented in the form of the abscissa results, with one
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observation per field of view crossing. Although an actual
position is given, the only value of this position is to serve
as a reference point for the abscissa measurement. The ac-
tual data-point could be found anywhere close to this line.
Figure 3 shows how from the published data (described in
Vol. 1, Sect. 2.7) and a predicted position (αm, δm) the
abscissa residual v can be derived. Assuming that the dis-
tances between the published and the predicted positions
are small (generally less than 1 arcsec), the Euclidian ap-
proximations can be made:

v = (αm − α0) cos δ sin θ + (δm − δ0) cos θ. (13)

The handling of these measurements is very similar to the
handling of the star abscissae: a model predicts abscissa
positions and their dependence on the model parameters.
We take e.g. the best available ephemerides of an object
to calculate predicted positions (αm|i, δm|i). The abscissa
residuals vi for these predicted positions (Eq. 13) can be
represented in various ways: either as a function of some
critical parameters in the model, or simply as observed
offsets in coordinates as a function of time:

dv = dα cos δ sin θ + dδ cos θ + ε, (14)

with < ε2 >
1
2 = σv. By representing dα and dδ as func-

tions of parameters ai, such as time or orbital elements,

Eqs. (14) are solved through minimizing
∑
i

(
vi−dvi
σvi

)2

.

Here, as in all other similar solutions, no correlations are
assumed to exist between data on different reference great
circles.

It should be realized, however, that for the determina-
tion of both dα and dδ, measurements are required from
different reference great circles, providing the different an-
gles θ needed to remove their correlation.

6. Combined solutions

As was explained in Sect. 2.2, correlations exist between
abscissa residuals on the same reference great circle, in
particular for observations with differences between the
abscissa values of less than 4 degrees. These correlations
can only be fully accounted for through the use of the
abscissa data in combined solutions for the astrometric
parameters of groups of stars. Combined solutions are es-
sential for solving mean parallax and proper motion val-
ues in a relatively small area of the sky (density of objects
more than 0.2 per square degree). In addition, combined
solutions offer the best possibilities for incorporating con-
straints obtained from other data.

In a combined solution one starts by collecting all the
abscissa data for the stars involved, and sort these on orbit
number (there is one reference great circle, or RGC, per or-
bit). Covariance matrices are determined and applied per
reference great circle. The reference great circle data file
(Table 2.8.1 in Vol. 1) provides the pole positions for the
NDAC and FAST RGCs, which are transformed to unit

Fig. 4. Definition of the angles and directions used to calculate
the relative abscissae along the reference great circle

vectors in the equatorial reference system, pN and pF . A
unit length reference direction r (Fig. 4) on each RGC
can be obtained e.g. from its crossing with the Equatorial
plane:

p ≡

 p1

p2

p3

 , (15)

from which:

r =
1√

p2
1 + p2

2

 p2

−p1

0

 . (16)

A vector t completes the triad (r, t,p):

t =
1√

p2
1 + p2

2

 −p1p3

−p2p3

p2
1 + p2

2

 . (17)

Given the unit vector s directed towards the reference po-
sition of a star (the effect of aberration and other smaller
effects have been removed in the great-circle reduction
process and would have been almost identical for neigh-
bouring stars), we calculate the angles ζ and η (see Fig. 4):

cos ζj = s′rj (18)

cos ηj = s′tj (19)

and ψ:

cosψj = s′pj , (20)

where j equals N or F , depending on the origin of the
observation. The abscissa φ for this star is then derived
from:

cosφj = cos ζj/ sinψj

sinφj = cos ηj/ sinψj . (21)

Although for large distances between stars the difference
between the abscissae will be almost equal to the actual
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distance between those stars on the sky, this is not neces-
sarily the case for small distances (less than a few degrees),
where the correlations are the strongest.

The abscissa separation between two stars, ∆φjk , mea-
sured by the same consortium on the same RGC, is trans-
lated into a correlation coefficient, using the functions
given in Table 1 (with n5 as defined in Sect. 2.2 and Fc a
flag indicating the relevant consortium):
Qjk = f(Fc, n5,∆φjk), (22)
which produces a coefficient in the covariance matrix:
Vjk = Qjkσjσk. (23)
Although no direct correlations exist between data for dif-
ferent stars on the FAST and NDAC RGCs, secondary cor-
relations or covariances do occur as a result of the correla-
tions between measurements of the same stars by NDAC
and FAST. One of the differences between a natural cor-
relation and a covariance due to a secondary correlation is
that the first kind affects the total amount of information
(“total weight”) of the observations, while the second kind
does not.

The exact values of these covariances are difficult to
estimate due to possible small correlations between at-
titude errors, but their approximate values can be de-
rived as follows. Assume three sets of unit weight residu-
als, εk,i, (k = F,N) and εk,j , (k = F ). Say that there are
natural correlations between εF,i and εN,i (same observa-
tion, different reductions), such that < εF,iεN,i >= QFNii .
Similarly, a natural correlation exist between εF,i and
εF,j (same reference great circle, different stars), given by
QFFij . No natural correlation exist between εN,i and εF,j ,
but due to the other correlations, a covariance will oc-
cur, which can be approximated by substituting εF,j =
QFFij εF,i + νF,j, which results from the first correlation.
Thus, as εN,i and νF,j are uncorrelated, we find for the co-
variance < εN,iεF,j >≈ QFFijQFNii, giving the following
element in the covariance matrix:
VFNij = QFFijQFNiiσFiσNj . (24)
This covariance is only an approximation; in fact a slightly
different value can be obtained by using a different link
between the variables:
VFNij = QNNiiqFNijσFjσNi . (25)
The effect of introducing these covariances in the covari-
ance matrix is to preserve the proper weight reduction
caused by the natural correlations: they cancel out when
inverting the covariance matrix, leaving at the diagonal
elements only the effects of the natural correlations. In
the example given above the covariance matrix looks like: 1 q12 q13

q12 1 q12q13

q13 q12q13 1

 , (26)

where we substituted QFFij = q12, QFNii = q13, and as-
sumed all variances to be equal to 1. A Gauss elimination
produces: 1 q12 q13

0 1− q2
12 0

0 0 1− q2
13

 . (27)

The inverted, variance matrix then reads as follows:
1 +

q212

1−q212
+

q213

1−q213

−q12

1−q212

−q13

1−q213

−q12

1−q212

1
1−q212

0

−q13

1−q213
0 1

1−q213

 , (28)

from which is obtained the Cholesky square root, as de-
fined by Eq. (5), and by means of which the observations
are weighted:

1 0 0

−q12√
1−q2

12

1√
1−q2

12

0

−q13√
1−q2

13

0 1√
1−q213

 . (29)

Thus, in the final weighting of the observations, the covari-
ances as produced by the secondary correlations (products
of q12 and q13) have disappeared, and only the influences
of the natural correlations remain.

After inverting V and taking its Cholesky square root,
it can be applied to the original observations to obtain
a set of uncorrelated and properly weighted observation
equations. This is done for the data in each RGC, covering
the observations of both consortia (when available). These
de-correlated observations can then be incorporated in a
classical least-squares solution.

The observational equations used for each star can ei-
ther be the original equations, in which case corrections
to the individual parameters are found, and a set of un-
correlated parameters is determined, or they can contain
common parameters such as a common proper motion
and/or a common parallax. When solving for a common
parameter, it is essential that all abscissa residuals are
corrected to represent a reference solution referring the
abscissa residuals for all stars involved in the combined
solution to the same parallax and/or proper motion val-
ues. These corrections are obtained using Eq. (10). Thus,
for the LMC-stars example, the residuals are corrected to
reference values of zero proper motion and a parallax of
0.02 mas, and then solved together for a common proper
motion. The combined solution provides corrections to the
reference values. It is also possible to use all observations,
ignoring rejections from the standard processing, and de-
termine new rejections under the new conditions, based
on the residuals relative to the combined solution. When
determining the mean proper motion of a star cluster, it is
possible to incorporate precise differential proper motions
obtained on the ground as constraints for the solution. In
all cases, the degrees of freedom available will be strongly
reduced, thus improving the reliability of the solution.

In the solutions for a star cluster the space velocity
rather than the proper motion should be considered con-
stant. Without the presence of internal motions this con-
dition can be used to determine individual distances and
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radial velocities of cluster members, as was shown for the
Hyades cluster by Dravins et al. (1997). For a cluster like
the Pleiades, however, with a higher internal velocity dis-
persion but a larger distance and a small radial velocity,
the differential distance variations and the projection of
the radial velocity can be ignored, and the shared space
velocity of cluster members can be expressed as a function
of the proper motion of the centre of the cluster (indicated
by the subscript “c”) and the position of each object on the
sky, relative to the cluster centre (see VL98 for a deriva-
tion):

µα cos δ ≈ (µα cos δ)c + (µδ)c sin δ sin(α− αc)

µδ ≈ (µδ)c − (µα cos δ)c sin δ sin(α− αc). (30)

The effects are, as one would expect, most noticeable close
to the equatorial poles (sin δ ≈ 1 and relatively large vari-
ations in α for relatively small angular separations) and
for clusters covering large parts of the sky. There are dif-
ferent ways to solve for ((µα cos δ)c, (µδ)c). One way is to
first transform all abscissae residuals back to zero proper
motion, and then implement Eqs. (30) in the solution for
each star. This then gives, as the proper motion part of
the solution, the following equation (where a4 = µα cos δ
and a5 = µδ):

dv = (µα cos δ)c

(
∂v

∂a4
− sin δ sin(α− αc)

∂v

∂a5

)
+(µδ)c

(
∂v

∂a5
+ sin δ sin(α− αc)

∂v

∂a4

)
. (31)

Alternatively, a first-order approximation is made for the
cluster proper motion, from which the local projection
corrections are calculated. In a subsequent iteration, fur-
ther adjustments of the cluster proper motion will have
negligible influence on these projection corrections. Only
when the cluster is spread out over a large part of the sky,
like the Hyades, must these and other corrections be fully
taken into account.

Other possibilities of combined and constrained solu-
tions may not involve small fields, and can be simpler to
apply as they would not require de-correlating observa-
tions of different stars. Accidental correlations that could
occur because of two stars appearing on the same reference
great circle will be small and rather rare, and therefore of
very little influence. Correlations between the FAST and
NDAC reductions of the same observations are removed
using Eq. (9). This kind of solution can be used for lumi-
nosity calibrations.

As an example, consider determining the mean ab-
solute magnitudes of RR Lyrae stars in a single solu-
tion, using the parallax information contained in the
abscissa residuals and the reddening-corrected apparent
mean magnitudes. The procedure goes as follows. First
assume a reasonable value for the absolute magnitude
M̂V (RR), related in a well defined manner (passband)
to the reddening corrected mean apparent magnitude

< mv > of each star. Translate the difference into a pre-
dicted parallax:

π̂ = 100× e−0.4605(mv−M̂V (RR)), (32)

where π̂ is measured in mas. All abscissae are corrected
for the difference ∆π = π̂ − π between the published (π)
and the calculated predicted parallax (Eq. 10). The esti-
mated absolute magnitude M̂V (RR) will differ by a small
amount from the best estimated value indicated by the
observations:

M̃V (RR) = M̂V (RR) + ∆MV (RR). (33)

This correction to the absolute magnitude will in the first
approximation result in a scaling correction of the as-
sumed parallaxes:

π̃ = π̂ × (1− 0.4605∆MV (RR)) ≡ π̂(1− ν), (34)

giving corrections to the assumed individual parallaxes of
−π̂ν, where π̂ is the estimated parallax of an individual
RR Lyrae star, and ν a correction factor which is the same
for all RR Lyrae, if our basic assumption that the abso-
lute magnitudes of these stars are equal is indeed correct.
Thus, we can now create one solution for all RR Lyrae,
solving for each star the position and proper motion cor-
rections, and solving for one overall parallax correction
factor ν. The solution provides an accuracy of the esti-
mated value ν̃ and thus for M̃V (RR), and will tell how
good the model is (at the available accuracy of the obser-
vations) through its χ2 value. By using this method rather
than the direct interpretation of the published parallaxes,
a more reliable and better to interpret solution is obtained,
involving fewer degrees of freedom and deriving the criti-
cal quantity of the distance scale correction directly from
the actual observations: the abscissa data. However, as the
correction factor ν is multiplied by the estimated paral-
lax, most of the weight in the solution will still come from
the nearest stars. As long as the accuracy of the corrected
apparent magnitudes is high, any bias on the derived par-
allaxes will be very small, and no bias is expected from
the solution. This was confirmed by a simple simulation.
A more general description of luminosity calibrations us-
ing this method can be found in VL98. A different method
for obtaining unbiased luminosity estimates has been pre-
sented by Luri et al. (1996), and is based on a maximum
likelihood estimate for a set of probability distributions.

An estimate of the expected accuracy of ν̃ can be ob-
tained from:

σν ≈

√
1∑

i π̂
2
i

(
Ti

∂vi
∂π

)′ (
Ti

∂vi
∂π

) , (35)

where the index i represents the different stars, and Ti is
the Cholesky square root of the variance matrix for star
i. This can be approximated with the following simplifi-
cation to:

σν ≈

√√√√ 1∑
i

(
π̂i
σπi

)2 , (36)
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where σπi is the parallax accuracy given in the final cat-
alogue, but π̂i is the estimated parallax value as defined
above, and NOT the value given in the catalogue.

7. Application examples

The examples presented in this section are intended to
show how the methods presented in the present paper can
be incorporated in various studies. They do NOT intend to
be exhaustive presentations of these studies. The emphasis
is always on how the Hipparcos intermediate astrometric
data can be used, or in some cases, should be used.

7.1. The absolute magnitude of RR Lyrae stars

The Hipparcos variability annex gives 38 RRc and 146
RRab stars. Of the latter there is one which was newly
defined as RRab, and which now can be rejected as such
on the basis of its parallax: HIP 100859, which has a par-
allax of 26 mas, giving it an absolute magnitude of 2.9.
Furthermore, RRc types with periods below 0.3 days were
found to show often fainter absolute magnitude (see also
VL98 on the classification of A and F type periodic vari-
ables). Leaving out those cases, 155 RRab and RRc stars
were left. These stars provide 9345 individual abscissae
measurements, from which, without taking into consider-
ation the effects of reddening, a parallax based absolute
magnitude of MHp = 0.94±0.19 was obtained. This is not
significantly different from kinematically derived parallax
estimates by Fernley et al. (1997), who note, however, that
some of the stars in the selection used here are not con-
firmed independently as RR Lyrae stars. The unit weight
standard deviation of the solution is 1.021, which, given
the number of observations, is close to significantly dif-
ferent from the expected value of 1.00. The consistency
between the magnitude based parallaxes and the paral-
laxes obtained from the individual solutions is shown in
Fig. 5.

7.2. The PL relation of Mira stars

The Mira stars in the Magellanic Clouds show in the K
band a period luminosity relation. The slope of this rela-
tion was used by van Leeuwen et al. (1997b) in combina-
tion with Hipparcos parallaxes to derive a zero point for
this relation. A major problem with the Mira stars is the
effect of the very large brightness and colour variations
on the astrometric measurements. Most of the brighter
Miras received so-called “V” type solutions, implementing
a brightness related correction to the abscissae residuals.

We started off with the same selection of 16 stars as
used by van Leeuwen et al. (1997b), and removed from
this list two stars suspected of being fundamental mode
pulsators, a symbiotic, a C-type and a double mode Mira,

Fig. 5. The relation between the photometric parallaxes, cal-
ibrated using Hipparcos abscissa data, and the observed in-
dividual parallaxes with their estimated errors for RRab and
RRc stars. The solid line represents the expected one-to-one
relation

and tested all solutions for a standard 5-parameter so-
lution. Three stars showed very bad fits according to the
unit weight variances of their residuals, and were removed.
There remained 8 stars, for which the reddening corrected
“K” magnitudes were fitted using:

MK = −3.47 logP + β1. (37)

Predicted parallaxes were calculated for assumed values of
β1. Corrections to this assumed value reflected in a scal-
ing parameter for the parallaxes, which was solved for all 8
stars simultaneously using their 465 abscissae records. No
corrections for brightness variations were introduced. The
value thus obtained is β1 = 0.65 ± 0.16, slightly smaller
than what was given by van Leeuwen et al. (1997b), but
this may be related to ignoring the above mentioned cor-
rections. The need for these corrections was reflected in
the unit weight standard error, which measured 1.35.

7.3. The Magellanic Clouds

A preliminary calculation of the proper motions of the
Large and Small Magellanic Clouds was carried out for the
paper by Kroupa & Bastian (1997). The covariance values
have since been recalculated in more detail (see Sect. 2.2),
and were in most cases found to be smaller than shown in
Figs. 17.11 and 17.12 of Volume 3, Chapter 17.

The situation for the LMC and SMC is simple. The
Hipparcos Catalogue contains 31 members of the LMC
and 8 members of the SMC for which a single star solu-
tion of type “5” or “7” was obtained. Given the distances
of the Magellanic Cloud stars, it was assumed that solu-
tions of type “7” were spurious. The astrometric solutions
for these stars were obtained from in total 2229 abscissa
measurements in the LMC and 514 in the SMC. Each star
had a parallax and proper motion derived in its individ-
ual solution. The first task was to remove the parallax
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Table 3. Preliminary results for common proper motion solu-
tions for stars in the LMC and SMC. The correlation coeffi-
cients ρ between the proper motion in declination and right
ascension are also given

LMC SMC

Number of stars 31 8
Number of abscissae 2229 514
µα cos δ (mas/yr) 1.60 ±0.29 1.13 ±0.77

µδ (mas/yr) 0.19 ±0.37 −1.17 ±0.66
ρ
µδ
µα cos δ

−0.116 0.135
uw standard error 1.090 ±0.016 1.056 ±0.033

and proper motions and to obtain abscissae relative to a
zero proper motion and parallax (using Eq. 10). The ab-
scissae were sorted on orbit number and for every orbit
a set of de-correlated observation equations was obtained
(corrected for the consortia correlations and the correla-
tions described in Sect. 2.2). The observation equations
described corrections to individual star positions and to a
common LMC or SMC proper motion, but did not allow
for a parallax solution. These de-correlated observation
equations were accumulated in a single least squares solu-
tion, (using Eq. (31) for the proper motions) providing the
results shown in Table 3. From the unit weight standard
errors it is clear that the condition of a single common
proper motion over the LMC may not be entirely satisfied,
producing a χ2 significantly above the expected value. The
situation is better for the SMC. The differences between
the values presented here and those presented earlier by
Kroupa & Bastian have no significant effect on the discus-
sions presented in that paper.

7.4. The Pleiades and Praesepe

The determination of the Pleiades parallax and proper
motion will be dealt with in detail by van Leeuwen and
Hansen (in preparation). Here we present the preliminary
results of that study and a similar application to stars in
the Praesepe cluster.

The Hipparcos catalogue contains 60 members of the
Pleiades cluster. Of these, 54 were selected as single stars
with solution type “5”, providing a total of 2182 abscissae
(see van Leeuwen & Hansen-Ruiz 1997). All abscissae were
incorporated, including those rejected in the individual
star solutions. In an iteration over the combined solution
a total of 4 abscissa residuals were rejected. All abscissae
were corrected to a reference parallax and proper motion,
and sorted on orbit number. For each orbit a set of de-
correlated observation equations was created, which were
combined in one least-squares solution. The observation
equations described positional corrections for all 54 stars
and one parallax and proper motion for the cluster centre,
using Eq. (31). Thus, the degrees of freedom were reduced

Table 4. Preliminary results for common proper motion and
parallax solution for stars in the Pleiades and Praesepe clus-
ters. The various correlation coefficients ρ are also given

Pleiades Praesepe

Number of stars 54 22
Number of absc. 2182 940

π (mas) 8.61 ±0.23 5.04 ±0.36
Distance modulus 5.32 ±0.05 6.49 ±0.15
µα cos δ (mas/yr) 19.67 ±0.24 −35.61 ±0.40

µδ (mas/yr) −45.55 ±0.19 −12.54 ±0.26
ρπµδ −0.100 −0.192
ρπµα cos δ

−0.042 −0.165
ρ
µδ
µα cos δ

0.244 −0.078
uw standard error 1.058 ±0.016 1.053 ±0.024

from 54 × 5 = 270 to 3 + 54 × 2 = 111. The results are
summarized in Table 4. From the unit weight standard
error and its uncertainty it appears that there remained
unmodelled effects in the parallax and proper motion. This
is most likely the internal proper motion dispersion in the
cluster, which has a dispersion in the projected centre of
the cluster of around 1 mas s−1. The correlation coefficient
of ρµδµα cos δ

= 0.244 reflects the proximity of the Pleiades to
the ecliptic and limited range of scan-directions resulting
from this situation.

Table 4 also provides similar results for the Praesepe
cluster. Here there is no significant contribution from an
internal proper motion dispersion.

8. Conclusions

By providing the users with the intermediate astrometric
data in the form of the actually observed abscissa resid-
uals, a range of uses of the Hipparcos data has become
possible that allows proper determination of statistical
quantities, as well as the combination of Hipparcos data
with other information, providing general determinations
with improved reliability of quantities like cluster proper
motions and parallaxes, as well as for luminosity calibra-
tions.
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Appendix A: Summary of the implementation method

In the following appendices a set of algorithms is presented
as they were used in varies applications of the methods
described in the present paper. The algorithms are built
using a vectorial storage of symmetric and upper or lower
triangular arrays, implicitly using the knowledge of sym-
metry or zero elements. This reduces storage needs and in
some cases facilitates implementation. All algorithms are
given in Fortran 77.

As a first step, the abscissae for all stars to which
a combined and/or constrained solution is to be applied
are extracted from the intermediate astrometric data file,
where they are sorted on star number and for each star on
orbit number. The abscissa file thus created is then sorted
on orbit number and within each orbit on star number.

Appendix B: Vector storage of arrays

The relation between the one-dimensional vectors (here
symbolized by v) and the matrices (M) they represent is
as follows (i represents the rows, j the columns):

v(k) = M(i, j) for all j ≥ i and k = j(j − 1)/2 + i (B1)

In a symmetric matrix the additional condition

M(j, i) = M(i, j) (B2)

applies, and in a lower triangular matrix:

M(i, j) = 0 for all j < i. (B3)

Appendix C: Building up of the covariance matrix

A covariance matrix is created for the data contained in
each orbit. To each abscissa record is assigned a flag F(J),
which tests as .TRUE. for data from FAST, and as .FALSE.
for data from NDAC. Abscissae are calculated using the
mechanism described in Sect. 6, giving for each record a
value ABSC(J). Each record is in addition identified by its
star number, HIP(J). The covariance matrix is called CV
and is stored in vector form as described above. The stan-
dard error on the abscissa residual is given by SRES(J)
and the correlation coefficient with the same measure-
ment as reduced by the other consortium by CCOR(J). The
function ABSCCORR(F(J),LE,DIS) returns the correlation
coefficient ACOR, which applies to data obtained within
one consortium (F(J)) with a given dataset length of N5
and an abscissae distance of DIS between two stars. Then,
given N abscissa records for current orbit:

I1 = 0

DO K = 1, N

C

C diagonal element

C

I1 = I1 + K

CV(I1) = SRES(K) * SRES(K)

DO L = K-1, 1, -1

L1 = K*(K-1)/2 + L

IF(HIP(L) .EQ. HIP(K)) THEN

C

C same observation, different consortium

C

CV(L1) = CCOR(K)*SRES(K)*SRES(L)

ELSE

DIS = ABS( ABSC(K) - ABSC(L) )

ACOR = ABSCCORR(F(L),N5,DIS)

IF(F(L) .EQ. F(K)) THEN

C

C same consortium

C

CV(L1) = ACOR*SRES(K)*SRES(L)

ELSE

C

C different consortia, secondary correlation

C

CV(L1) = CCOR(K)*ACOR*SRES(K)*SRES(L)

END IF

END IF

END DO

Appendix D: The square root of the inverse of the
covariance matrix

There are various ways in which the square root of the
inverse of the covariance matrix can be obtained. A nu-
merically stable and simple method is by taking the square
root of the covariance matrix first, and then inverting this
lower triangular matrix. Alternatively, one could invert
the covariance matrix, and then take the square root (but
this could involve less numerically stable calculations).

The algorithm for the Cholesky factorization of the
symmetric matrix CV is as follows:

M = N*(N+1)/2

DO I = 1, M

LT(I) = CV(I)

END DO

DO I = N, 2, -1

LT(M) = SQRT(LT(M))

K = 0

M = M - I

L = M

DO J1 = 1, I-1

L = L+1

LT(L) = LT(L)/LT(M)

DO J2 = 1, J1

K = K+1

LT(K) = LT(K) - LT(M+J2)*LT(L)

END DO
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END DO

END DO

LT(1) = SQRT(LT(1))

from which is obtained the lower (or upper) triangular
matrix LT. The determinant of the covariance matrix CV,
which provides a measure of the total amount of informa-
tion available in the observations, can be obtained from
the product of the squared diagonal elements of LT. The
matrix LT is inverted using:

K = 0

C

C Creating unit matrix

C

DO I = 1, N

K= K + 1

LI(K) = 1.0

DO J = 2, I

K = K + 1

LI(K) = 0.0

END DO

END DO

C

C Starting inversion process

C

M = N*(N+1)/2

DO I = N, 1, -1

L = M

DO J1 = I, 1, -1

LI(M) = LI(M) / LT(L)

K1 = M

DO J2 = J1-1, 1, -1

L = L-1

K1 = K1-1

LI(K1) = LI(K1) - LI(M)*LT(L)

END DO

M = M-1

L = L-1

END DO

END DO

giving the square root LI of the inverse of the covariance
matrix CV.

Appendix E: Application of the square root matrix

Given an array P(N,NPAR) and a vector O(N) representing
the left and right hand side of N observation equations
with NPAR parameters, then the multiplication of the N by
N matrix LI with P and O produces a set of decorrelated
observation equations (PO,OO):

L=1

DO J=1,N

C

C initialization of PO, OO

C

DO I = 1, NPAR

PO(J,I) = 0.0D0

END DO

OO(J) = 0.0D0

C

C de-correlation processing

C

DO K = 1, J

DO I = 1,NPAR

PO(J,I) = PO(J,I) + LI(L) * P(K,I)

END DO

OO(J) = OO(J) + LI(L) * O(K)

L = L+1

END DO

END DO

END DO

The new set of observation equations can now be used
in e.g. a Householder transformations based least squares
solution (see Bierman 1977).
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