
ENS 2013/2014
Exam of General Relativity,

november the 14th 2013
9h30-12h30

In all the exam, except if mentioned otherwise, one takes c = 1. The symbol ”≡” indicates a definition. One uses
the conventions of the lectures. Answers should be carefully justified.

1. Weyl’s tensor, conformally equivalent and conformally flat metrics, Nordström’s scalar theory.

One considers a space-time of dimension D with D ≥ 3. This space-time is endowed (like in general relativity) with
a metric (a two times covariant symmetric tensor) of signature −,+,+,+, · · · . One assumes that when D ̸= 4 the
definitions given in the lectures for the tensors, covariant derivatives (etc...) still hold. We remind in particular the
definitions of Christoffel’s symbols Γµ

νρ, Riemann tensor Rλ
µνρ, Ricci tensor Rµν , and Ricci scalar R:

Γµ
νρ =

1

2
gµσ (∂νgσρ + ∂ρgνσ − ∂σgνρ) (1)

Rλ
µνρ = ∂νΓ

λ
µρ − ∂ρΓ

λ
µν + Γσ

µρΓ
λ
σν − Γσ

µνΓ
λ
ρσ (2)

Rµν = Rσ
µσν (3)

R = Rµνgµν (4)

1.1. Do the symmetries (not involving derivatives) of the Riemann tensor valid for D = 4 still hold when D ̸= 4?

1.2. We remind that an event P of space-time being chosen, one can build a coordinate system, called a locally
inertial coordinate system in P, such that, in P, the first derivatives of the metric vanish. What is then the
expressions of the components of the Riemann tensor in P in the locally inertial coordinate system?

1.3. The Christoffel symbols allow one to define a covariant derivative for arbitrary D like the one defined for D = 4.
We will denote ∇ this covariant derivative, as in the lectures. Show that for an arbitrary tensor T

µ1···µp
ν1···νq ,

one has

[∇ρ,∇λ]T
µ1···µp

ν1···νq ≡ ∇ρ∇λT
µ1···µp

ν1···νq −∇λ∇ρT
µ1···µp

ν1···νq (5)

= −
i=p∑
i=1

R µi

ρλσ T
µ1···µi−1σµi+1···µp

ν1···νq +

j=q∑
j=1

R σ
ρλνj

T
µ1···µp

ν1···νj−1σνj+1···νq . (6)

Indication: use locally inertial coordinates (one should then carefully justify how one can deduce the expression
above from the one obtained using locally inertial coordinates, as well as the different steps of the reasoning).

1.4. The covariant derivative satisfies the Jacobi identities given by

([∇µ, [∇ν ,∇ρ]] + [∇ν , [∇ρ,∇µ]] + [∇ρ, [∇µ,∇ν ]])T = 0, (7)

where T denotes here a tensor of arbitrary variance and [, ] denotes a commutator as defined in (5). Show that
one can deduce

∇σR
λ
µνρ +∇νR

λ
µρσ +∇ρR

λ
µσν = 0 (8)

1.5. One defines then the 4-times covariant tensor

Cλµνρ = Rλµνρ + a (gλνRµρ + gµρRλν − gλρRµν − gµνRλρ) + b (gλνgµρ − gλρgµν)R (9)

where a and b are real numbers. Show that the tensor Cλµνρ has the same symmetries (not involving derivatives)
as the Riemann tensor.
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1.6. Show that one can choose a and b depending on the dimension D such that all contractions of any two indices of
Cλµνρ with the inverse metric gσω vanish. In this case, Cλµνρ is called the Weyl tensor. Give the corresponding
expressions of a and b as functions of D.

1.7. One says that two metrics gµν and fµν are conformally equivalent, if and only if there exists a coordinate system
xµ and a scalar function S(xµ) such that one has

gµν = S × fµν (10)

What can be said on the light cones of two conformally equivalent metrics?

1.8. One says that a space-time is conformally flat, if there exists a coordinate system where its metrics gµν is
conformally equivalent to the canonical metric of Minkowski space-time ηµν = diag (−1, 1, 1, 1, · · · ). In such a
coordinate system, one has then

gµν = S × ηµν (11)

and S is called the conformal factor of the metric. One considers FLRW space-times with flat spatial sections,
i.e. space-times with a line element ds given by

ds2 = −dt2 + a2(t)dxidxjδij , (12)

a(t) being the scale factor and δij the canonical metric of the D − 1 dimensional euclidian space. Show that
such a FLRW space-time is conformally flat. What is the expression of its conformal factor?

1.9. One considers a conformally flat space-time and one denotes by S = e2φ the conformal factor. Show that the
Christoffel symbols for this metric read

Γλ
µν = δλν ∂µφ+ δλµ∂νφ− ηµνη

λσ∂σφ (13)

Show that one can expect the Ricci tensor to have the form

Rµν = c1∂µ∂νφ+ c2∂µφ∂νφ+ c3ηµνη
ρσ∂ρφ∂σφ+ c4ηµνη

ρσ∂ρ∂σφ (14)

where coefficients c1, c2, c3 and c4 are constants. Can one expect that these constants be independent of the
dimension? One assumes that φ is vanishing at an event P . Give a sufficient condition on the derivatives ∂µφ
such that the coordinate system is locally inertial in P .

1.10. One considers now (in questions 1.10., 1.11. and 1.12.) a theory which differs from general relativity and which
has been discussed by Nordström (in 1912) and then Einstein-Fokker (1914). In this theory (that we will call
here Nordström scalar theory) space-time is, like in general relativity, endowed with a metric gµν . One assumes
besides that D = 4 for this theory. Matter is also described by a conserved energy momentum tensor Tµν which
obeys then ∇µT

µν = 0. The metric is supposed to be conformally flat, i.e.

gµν = Ω2(x)ηµν , (15)

and Einstein equations are replaced by

R = kT (16)

where k is a constant and T ≡ gµνTµν . One considers a set of dust particles, i.e. a pressureless fluid described
by Tµν = ρuµuν , where ρ is the mass density and uµ ≡ dxµ/dτ (τ being the proper time along the trajectory
of the particle) the unit velocity 4-vector (uµuµ = −1). Show that like in general relativity the conservation of
Tµν implies non only the conservation of matter ∇µ (ρu

µ) = 0, but also the geodesic equation uµ∇µu
ν = 0.

1.11. Do the weak equivalence principle hold in Nordström scalar theory (i.e. do a gold bar and an apple fall in the
same way in a gravitational field)?
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1.12. One admits that for a metric of the form (15) the Ricci scalar reads (in 4 dimensions)

R = −6Ω−3ηµν∂µ∂νΩ (17)

One assumes that in the weak field limit, Ω(xλ) = 1 − U(xλ) + · · · , where one neglects higher order irrelevant
terms and where U ≪ 1. What should be the form of U in order to find back (at lowest order) the newtonian
motion in a gravitational field of a static point source described by the metric considered here? Is it possible
to choose k so that the Newtonian theory is recovered in this limit? Does Nordström scalar theory pass all the
tests of General Relativity?

( NB: The following two questions 1.13. and 1.14. lead to quite long calculations. It is advised
to look at them only at the end, if you have some time left).

1.13. Show that the Weyl tensor of a conformally flat metric is vanishing identically (whatever the dimension D ≥ 3)
and verify the expression (17).

1.14. Show that the Weyl tensor is vanishing in dimension 3.

2. de Sitter space-time

2.1. One considers a 4 dimensional surface embedded in a 5 dimensional Minkowski space-time. This surface is
characterized by coordinates XA(xµ), with µ = 0, 1, 2, 3 et A = 0, 1, 2, 3, 4, XA being canonical coordinates on
Minkowski space-time, and xµ coordinates on this surface. Show that the flat metric ηAB , of the embedding
space-time, induces a metric (called the ”induced metric”) gµν on the surface, which reads

gµν = ∂µX
A∂νX

BηAB . (18)

Indication: consider the way one can compute ”distances” (in the Riemannian sense) on the surface.

2.2. One considers, in the 5 dimensional Minkowski space-time of line element ds given by

ds2 = ηABdX
AdXB (19)

= −(dX0)2 + (dX1)2 + (dX2)2 + (dX3)2 + (dX4)2, (20)

the surface defined by

−(X0)2 + (X1)2 + (X2)2 + (X3)2 + (X4)2 = H−2, (21)

H being a constant, i.e. de Sitter space-time. One sets

Xi = eHtxi for i = 1, 2, 3,

X0 −X4 = 2eHt. (22)

Show that the induced metric on de Sitter space-time is of Friedmann-Lemâıtre-Robertson-Walker (FLRW)
form

ds2 = −dt2 + a(t)2ηijdx
idxj (23)

(with x0 = t) , and compute a(t).

2.3. Do the above coordinates cover all the de Sitter space-time?

3. Cosmological readshift for massive particles

One considers a particle of non vanishing mass in geodesic motion in a FLRW metric of the form

ds2 = gµνdx
µdxν (24)

= −dt2 + a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
,

= −dt2 + a2(t)γijdx
idxj (25)
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where we remind that a(t) is the “scale factor” of the Universe. One has k = 0,+1,−1 respectively for ”flat” universes
(euclidian spatial sections), “closed” universes (spatial sections given by 3-spheres) or “open” universes (hyperbolic
spatial sections), and γij is the corresponding spatial metric. The latter describes a maximally symmetric space of
signature +,+,+.

3.1. Are the xi necessarily constant for such a particle? Remind why one can choose the proper time τ of the particle
as an affine parameter for the geodesic motion.

3.2. Show that the geodesic motion leads to the equation

d2x0

dτ2
+

ȧ

a
|u⃗|2 = 0 (26)

where u⃗ = dx⃗/dτ is the 3-velocity of the particle and |u⃗|2 = a2γiju
iuj is its square norm. If one defines the

4-velocity as uµ = dxµ/dτ one has then uµ = (u0, u⃗)

3.3. What relation does exist between u0 and |u⃗| ?

3.4. Deduce from above that | ˙⃗u|
|u⃗| = − ȧ

a where a dot means a derivative with respect to the time t.

3.5. Show then that if p⃗ denotes the 3-momentum of the particle, p⃗ does redshift with the cosmic expansion. Is the
found relation the same as the one valid for photons?

3.6. What is the kinetic energy loss for a massive particle in geodesic motion as measured by an observer following
the particle (i.e. constantly in a frame where the observer is at rest with respect to the particle) between
the cosmological redshift (denoted by z in the lectures) corresponding to the emission of the CMB until that
corresponding to the formation of the first stars?

4. Palatini identities and Einstein-Hilbert action

One considers a 4 dimensional space-time endowed with a metric gµν . Let δgµν , be a variation of the metric gµν
(with δgµν ≪ gµν). I.e. one replaces gµν by gµν + δgµν (that we denote by gµν → gµν + δgµν) and in the following
one studies the induced change (always denoted similarly with a δ) on various quantities when we do the replacement
gµν → gµν + δgµν .

4.1. What is, at lowest order, the variation δgµν of the inverse metric as function of δgµν?

4.2. Show that at the linearized order in δgµν the variation δΓλ
µν of Γλ

µν , is given by

δΓλ
µν =

1

2
gλρ {∇ν(δgρµ) +∇µ(δgρν)−∇ρ(δgµν)} (27)

Is δΓλ
µν a tensor?

4.3. Show that the variation δRµν of Rµν is given by the Palatini identity:

δRµν = ∇λ

(
δΓλ

µν

)
−∇ν

(
δΓλ

µλ

)
(28)

4.4. Show then that
√
−ggµνδRµν reads

√
−ggµνδRµν = ∂λ

(√
−gAλ

)
, (29)

where Aλ is a vector that should be determined.

4.5. Deduce that the variation of
√
−gR is given by

δ
(√

−gR
)
= −

√
−gGµνδgµν + ∂λ

(√
−gAλ

)
(30)

4.6. Deduce the field equations (Euler-Lagrange equations) for the metric, derived from the Einstein-Hilbert action
SEH given by

SEH =

∫
d4x

√
−gR. (31)


