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ABSTRACT

The evolution of planetary systems around white dwarfs is crucial to understanding the presence of planetary material in the

atmospheres of white dwarfs. These systems uniquely probe exoplanetary compositions. Periodic signals in the photometry

of a handful of white dwarfs suggest material blocking the star, potentially from disintegrating planetesimals. Tidal evolution

followed by scattering can bring planetesimals onto close-in orbits that would have been within the envelope of the white

dwarf progenitor. The orbital period distribution of planetesimals undergoing tidal evolution will peak at short-period (nearly)

circularized orbits (∼ 10 hour–1 day), with a rising tail towards long-period highly eccentric orbits (∼ 100 day). This prediction

is generally consistent with the observed white dwarf transiting systems. In order for the planetesimal on the 4.5 hour period

around WD 1145+017 to be explained by the tidal evolution of a planetesimal, that planetesimal must have an ultimate tensile

strength comparable to that of iron meteorites.

Key words: white dwarfs – planets and satellites: general – planets and satellites: dynamical evolution and stability – planet–star

interactions

1 INTRODUCTION

White dwarfs that have recently accreted planetary material provide a

unique tool to probe the composition of planetary bodies outside the

solar system. White dwarfs are the left-over degenerate cores of low

to intermediate mass stars. The high surface gravity of white dwarfs

leads to rapid gravitational settling of metals (elements heavier than

helium). However, observations reveal that ∼ 10%–50% of the white

dwarfs are contaminated with metals, suggesting recent/ongoing ac-

cretion of the remaining planetary bodies around the white dwarfs

(Zuckerman et al. 2003, 2010; Koester et al. 2014; Wilson et al. 2019;

O’Brien et al. 2023, 2024; Manser et al. 2024).

The mechanism that leads to the accretion of planetary mate-

rial onto white dwarfs remains unclear. The widely accepted theory

is that planetesimals (planetary building blocks) are gravitationally

scattered towards the white dwarf under the effect of massive per-

turbers, for instance, planets (Bonsor et al. 2012; Mustill et al. 2018;

Rodet & Lai 2024). These scattered planetesimals end up entering

the white dwarf atmosphere. The accretion onto white dwarfs can be

observed in action, with both dusty material (infrared excess) and gas

(circumstellar absorption/emission features) detected (Zuckerman &

Becklin 1987; Becklin et al. 2005; Kilic et al. 2005, 2006; Gänsicke

et al. 2007; Jura et al. 2007; Farihi et al. 2009; Jura et al. 2009; Farihi

et al. 2010; Melis et al. 2010; Debes et al. 2012; Xu et al. 2015;

Bonsor et al. 2017; Xu et al. 2020; Lai et al. 2021; Wang et al. 2023)

(see Farihi 2016 for a detailed review).

Further observational evidence for accretion in action comes from

the first identification of transits around a polluted white dwarf with

★ E-mail: yl817@cam.ac.uk

an infrared excess, WD 1145+017 using the Kepler K2 data (Van-

derburg et al. 2015). Follow-up observations from 2015–2017 re-

confirm the dominant period in K2 data, the 4.5 hr period (‘A’ pe-

riod), with variable weaker periodic signals (Vanderburg et al. 2015;

Gänsicke et al. 2016; Rappaport et al. 2016; Croll et al. 2017; Gary

et al. 2017).

There is a rich literature that attempts to explain the origin of the

transiting features of WD 1145+017. One popular model motivated

by the longer egress time and unexpectedly long transit duration

consistent with the light curves of disintegrating planets around main

sequence stars (Kawahara et al. 2013; van Lieshout et al. 2014;

Rappaport et al. 2014; Sanchis-Ojeda et al. 2015; van Lieshout et al.

2016) is a planetesimal with active dust/gas production orbiting the

white dwarf with a period of 4.5 hr (Rappaport et al. 2016; Veras

et al. 2017; Duvvuri et al. 2020; O’Connor & Lai 2020).

The second identified transiting white dwarf system,

ZTF J0139+5245, possesses a much longer period (107.2 day) than

WD 1145+017 (Vanderbosch et al. 2020). 5 more potential white

dwarf transiting systems are identified (Guidry et al. 2021), among

which ZTF J0328-1219 with robust evidence of transits is further

studied and two transiting periods 9.937 hr and 11.2 hr are found

(Vanderbosch et al. 2021). Meanwhile, another system with transits,

WD 1054-226 (period 25.02 hr) is reported (Farihi et al. 2022). With

the increase in publicly available light curves from past and present

facilities such as: Kepler/K2 (Borucki et al. 2010; Howell et al. 2014),

the Transiting Exoplanet Survey Satellite (TESS, Ricker et al. 2014),

Gaia (Gaia Collaboration et al. 2016), and the Zwicky Transient Fa-

cility (ZTF, Bellm et al. 2019), and future facilities such as: the Large

Synoptic Survey Telescope (LSST, Ivezić et al. 2019), more transit

candidates should be identified, with extensive high-speed photo-
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metric follow-ups usually required to confirm the transits and obtain

the transit periods (e.g., Guidry et al. 2021; Vanderbosch et al. 2021;

Farihi et al. 2022).

The transiting systems provide clear observational evidence for

planetary material close to the white dwarfs, potentially undergoing

active dust/gas production. If the planetary material has not under-

gone a common envelope event, orbital decay/circularization after

gravitational scattering may be required to bring planetary material

close to the white dwarfs, with tidal evolution a potential mechanism

(Veras & Fuller 2019, 2020; O’Connor & Lai 2020).

In the solar system, the tidal effect is responsible for the spin-

down of the Earth accompanied with the outward migration of the

moon, which help constrain the origin and the evolution history

of the Earth-moon system (Goldreich 1966; Kagan 1997; Neron

de Surgy & Laskar 1997; Zahnle et al. 2015; Tyler 2021; Farhat

et al. 2022; Downey et al. 2023). Tidal interactions also give rise

to the solar system’s volcanically active moon, Io (Tyler et al. 2015;

Rathbun et al. 2018; Kervazo et al. 2022; Davies et al. 2024; Seligman

et al. 2024). Meanwhile, tidal theory has also been applied to bodies

outside the solar system, for instance, eccentric migration potentially

responsible for the formation of hot (and sometimes inflated) Jupiters

(Miller et al. 2009; Ibgui et al. 2010; Leconte et al. 2010; Dong et al.

2021; Rozner et al. 2022; Glanz et al. 2022; Vick et al. 2023). Veras

et al. 2019 investigated the parameter space where tidal evolution

brings planets into the Roche limit of white dwarfs. Veras & Fuller

2019, 2020 and O’Connor & Lai 2020 incorporated tidal evolution to

explain the (potential) presence of close-in planetary bodies around

white dwarfs and constrain the tidal-related parameters of the bodies

based on their current orbits and the cooling ages of the white dwarfs.

In this paper, following the idea that tidal evolution may lead

to close-in planetary bodies around white dwarfs, we examine the

scenario that a population of surviving planetesimals scattered onto

highly eccentric orbits external to, and close to the Roche limit of

the white dwarfs tidally evolve onto various shorter-period orbits. By

tracing the orbital parameters of scattered planetesimals undergoing

tidal evolution, we:

• investigate the parameter dependence of tidal circularization

timescale,

• predict the distribution of orbital periods shaped by tidal evolu-

tion at a given epoch,

• compare the predicted orbital period distribution to periodic

signals seen for white dwarfs with transit features

• constrain the physical properties of the transiting planetesimals

and compare to Solar System asteroids.

The paper starts by summarising the model used to follow the tidal

evolution of scattered planetesimals (Section 2) and predict the resul-

tant orbital period distribution. The tidal evolution of an individual

planetesimal of given properties is presented in Section 3.1, high-

lighting the key factors affecting the tidal circularization timescale

(Section 3.1.2). By considering the probability of scattering plan-

etesimals to different initial pericentres, the probability distribution

of the orbital periods is calculated in Section 3.2. Then, we discuss

the limitations in the tidal model (Section 4.1) and the uncertainties

in the population of planetesimals scattered close to the white dwarf

(Section 4.2), together with the corresponding effects on the orbital

period distribution. In Section 4.4, we present a synthetic orbital pe-

riod distribution accounting for a population of planetesimals with a

range of properties scattered at different times and compare to cur-

rent observations. Finally, we discuss the implications of the model

in Section 4.5 and in Section 5, we summarize our results.

2 METHODS

Towards the end of the asymptotic giant branch/start of the white

dwarf phase, the host star loses a substantial amount of its mass,

weakening its gravitational attraction. As a result, the planetary sys-

tem tends to become less stable against gravitational perturbations

(Bonsor et al. 2011; Veras 2016; O’Connor et al. 2022). Under the

growing gravitational effects of perturbers (e.g., planets), the orbital

parameters of planetary bodies are altered (via, e.g., scattering), lead-

ing to phenomena such as ejection and tidal disruption, with the latter

a plausible pathway of polluting the photosphere of the white dwarf

(Mustill et al. 2018; Veras et al. 2021, 2023; Rodet & Lai 2024;

Veras et al. 2024). In this paper, we will use the term scattering to

refer to the delivery of planetesimals close to the white dwarf, but we

acknowledge the existence of other mechanisms (e.g., secular chaos

O’Connor et al. 2022, mean motion resonances Veras et al. 2023).

The method presented in this work utilises the constant time lag

(CTL) model of tidal evolution to predict the orbital evolution of

planetesimals scattered close to the white dwarf after leaving the

instability zone (which we define as Ī = 0). The aim is to predict

the orbital period distribution of planetesimals after a certain time of

tidal evolution, based on an assumption for the scattering process.

In this section, we:

• summarizing the CTL model (Section 2.1), outlining the cou-

pled evolution equations (Section 2.1.1) and listing the key properties

of the model (Section 2.1.2),

• derive the Roche limit accounting for the ultimate tensile

strength of the planetesimal and pseudo-synchronous spin predicted

by the constant time lag model, which constrains the orbital parame-

ter space where a planetesimal avoids tidal disruption (Section 2.2),

• summarize the method and list the choice of free parameters

(Section 2.3).

2.1 The constant time lag model

In this study, we use the CTL model to predict the orbital evolution

of planetesimals scattered close to the white dwarf, external to the

Roche limit (Section 2.2), after the planetesimals leave the instabil-

ity zone (where scattering occurs). Under the CTL model, the tidal

force exerted by the white dwarf raises tidal bulges on the planetes-

imal that lag behind the equipotential surface for a constant time

interval �Ī, inducing angular momentum transfer and dissipation of

orbital energy (Hut 1981; Levrard et al. 2007; Leconte et al. 2010;

Matsumura et al. 2010; Bolmont et al. 2011; Heller et al. 2011;

Beaugé & Nesvorný 2012; Hansen 2012; Glanz et al. 2022; Rozner

et al. 2022; Lu et al. 2023). Although more realistic models exist,

the unconstrained properties of exoplanetary bodies and the com-

plex coupling between rheological and tidal evolution also add more

uncertainties (Section 4.1).

2.1.1 Evolution equations

The coupled tidal evolution equations for a white dwarf-planetesimal

(two-body) system, expanded to the lowest order in �Ī and to the fifth

order in Ď
Ĩ are of the form (Hut 1981; Levrard et al. 2007; Leconte

et al. 2010; Matsumura et al. 2010; Bolmont et al. 2011; Heller et al.

2011; Beaugé & Nesvorný 2012; Hansen 2012; Glanz et al. 2022;

Rozner et al. 2022; Lu et al. 2023) (with the symbols defined in Table

1):

MNRAS 000, 1–18 (2024)
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Subscripts

Ħ planetesimal

∗ white dwarf

0 Ī = 0, the point of leaving the scattering zone

orbital evolution dominated by tide

eq equilibrium state under the CTL model

Constants

ă gravitational constant

ĉ» solar mass

Constant parameters

ĉ mass

Ď radius

Ā bulk density

ġ2 potential love number of degree 2

�Ī constant time lag

ć ć ≡ 3ġ2�Ī

ą moment of inertia

Ăĩ ultimate tensile strength

ÿ ÿ ≡ ą

ĉĎ2

ĐĦ ĐĦ ≡
ćĦ (ĉĦ+ĉ∗ )ĉ∗Ď

5
Ħ

ĉĦ
≈
ćĦĉ

2
∗Ď

5
Ħ

ĉĦ

Orbital parameters

ě eccentricity

ė semi-major axis

Đ orbital period

ħ pericentre distance

ħ = ė (1 − ě)

č apocentre distance

č = ė (1 + ě)

Ĉ spin

sgn(Ĉ) = sgn(cos Ċ )

Ċ obliquity

ĨRoche Roche limit

Ĥ mean motion

Ĥ =

√
ă (ĉĦ+ĉ∗ )

ė3

ā ratio of spin to orbital angular momentum

ā ≡ ÿ
ĉĦ+ĉ∗

ĉĦĉ∗
ĉ Ď2

ė2 (1 − ě2 )−
1
2 Ĉ
Ĥ

Time

Ī tidal evolution time

Ī = 0 the time of leaving the scattering zone

ăcir Tidal circularization timescale

Table 1. Definitions of the symbols used in this paper.

Ěě

ĚĪ
=

∑
ğ=Ħ,∗

9ćğĤ
ĉĦĉ∗

ĉ2
ğ

Ď5
ğ

ė5
ě(1 − ě2)−

13
2

×

[
11

18
(1 − ě2)

3
2 Ĝ4 (ě)Ĉğ cos Ċğ − Ĝ3 (ě)Ĥ

]
,

(1)

Ěė

ĚĪ
=

∑
ğ=Ħ,∗

2ćğĤ
ĉĦĉ∗

ĉ2
ğ

Ď5
ğ

ė4
(1 − ě2)−

15
2

×
[
(1 − ě2)

3
2 Ĝ2 (ě)Ĉğ cos Ċğ − Ĝ1 (ě)Ĥ

]
,

(2)

ĚĈğ

ĚĪ
= ćğĤ

2 (ĉĦĉ∗)
2

(ĉĦ + ĉ∗)ĉ
3
ğ

Ď3
ğ

ė3

1

ÿğ
(1 − ě2)−6

×

[
Ĝ2 (ě)Ĥ cos Ċğ −

1

2
(1 + cos2 Ċğ) (1 − ě2)

3
2 Ĝ5 (ě)Ĉğ

]
,

(3)

ĚĊğ

ĚĪ
= ćğĤ

2 (ĉĦĉ∗)
2

(ĉĦ + ĉ∗)ĉ
3
ğ

Ď3
ğ

ė3

sin Ċğ

Ĉğÿğ
(1 − ě2)−6

×

[
1

2
(cos Ċğ − āğ) (1 − ě2)

3
2 Ĝ5 (ě)Ĉğ − Ĝ2 (ě)Ĥ

]
,

(4)

where the subscript ğ represents the contribution of the tide induced

on the object ğ by the other object to the evolution of the system, and

Ĝ1 to Ĝ5 are of the form:

Ĝ1 (ě) = 1 +
31

2
ě2 +

255

8
ě4 +

185

16
ě6 +

25

64
ě8,

Ĝ2 (ě) = 1 +
15

2
ě2 +

45

8
ě4 +

5

16
ě6,

Ĝ3 (ě) = 1 +
15

4
ě2 +

15

8
ě4 +

5

64
ě6,

Ĝ4 (ě) = 1 +
3

2
ě2 +

1

8
ě4

Ĝ5 (ě) = 1 + 3ě2 +
3

8
ě4.

(5)

For a planetesimal-white dwarf system considered in this work,

we focus on the tide raised on the planetesimal by the white dwarf

(planetesimal tide, ğ = Ħ terms) because the contributions of white

dwarf tide is negligible: the ratio of the contributions of ğ = Ħ terms

to that of ğ = ∗ terms can be approximated as
ćĦ
ć∗

Ā2
∗Ď∗

Ā2
ĦĎĦ

∼
ćĦ
ć∗

1011

with log10
ćĦ
ć∗

∼ 10 (Willems et al. 2010; Veras & Fuller 2019;

Becker et al. 2023).

2.1.2 Properties of the model

The key properties of the CTL model (Hut 1981; Levrard et al. 2007;

Leconte et al. 2010; Matsumura et al. 2010; Bolmont et al. 2011;

Heller et al. 2011; Beaugé & Nesvorný 2012; Hansen 2012; Glanz

et al. 2022; Rozner et al. 2022; Lu et al. 2023) for a white dwarf-

planetesimal system are summarized below (see appendices A, B,

and see Table 2 for a summary):

• The orbital angular momentum of the white dwarf-planetesimal

system is conserved during tidal evolution, such that semi-major axis

and eccentricity evolution is constrained by the initial pericentre

distance (ħ0) and apocentre distance (č0) via:

ė(1 − ě2) =
2ħ0č0

ħ0 +č0
. (6)

• Under the CTL model, tidal evolution starting with identical

orbital parameters (ħ0,č0) forms a set of equivalent evolution tracks

that follow the identical trajectory in ė–ě space and simultaneous in

ĐĦĪ space, with ĐĦ modulating the tidal evolution rate given by:

ĐĦ =

ćĦĉ
2
∗ Ď

5
Ħ

ĉĦ
∝
ćĦĉ

2
∗ Ď

2
Ħ

ĀĦ
. (7)

• In comparison to the timescale of semi-major axis and ec-

centricity decay, the planetesimal reaches pseudo-synchronization

MNRAS 000, 1–18 (2024)
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Equilibrium

Ĉeq
2 cos ĊĦ

1+cos2 ĊĦ

Ĝ2 (ě)

(1−ě2 )
3
2 Ĝ5 (ě)

Ĥ

[
ă (ĉĦ +ĉ∗ )

] 1
2

(
ħ0+č0
2ħ0č0

) 3
2 2 cos ĊĦ

1+cos2 ĊĦ

Ĝ2 (ě)

Ĝ5 (ě)

sgn
(
ĉĈeq

ĉě

)
= sgn(ě)

Ċeq

{
0 0 f Ċp,0 <

ÿ
2

ÿ ÿ
2 < Ċp,0 f ÿ

Circularization

ěcir 0

ėcir
2ħ0č0
ħ0+č0

Ĉcir Ĥ

Ċcir Ċeq

Evolution trends

ė sgn( Ěė
ĚĪ

) = −sgn(ě)

sgn( ĉ ¤ė
ĉě

) = −sgn(ě)
Ěė
ĚĪ

(ě→ 0) = 0

ě sgn( Ěě
ĚĪ

) = −sgn(ě)

sgn( ĉ ¤ě
ĉě

) = sgn(ě − 0.658)
Ěě
ĚĪ

(ě→ 0) = Ěě
ĚĪ

(ě→ 1) = 0

ĈĦ sgn(
ĚĈĦ
ĚĪ

) = sgn(Ĉeq − ĈĦ )

ĊĦ sgn(
ĚĊĦ
ĚĪ

) = sgn(Ċeq − ĊĦ )

sgn(
ĉ ¤ĊĦ
ĉĈĦ

) = sgn
[

2
āĦ
Ĉeq (ĊĦ = 0) − ĈĦ

]
ħ sgn(

Ěħ
ĚĪ

) = sgn(ě)

č sgn(
Ěč
ĚĪ

) = −sgn(ě)

Table 2. The equilibrium spin, obliquity, and the eccentricity, semi-major

axis after tidal circularization under the CTL model, together with the general

evolution trends (the signs of the differential equations) of the model. sgn( Ĝ )

represents the sign of Ĝ , which is 1 if Ĝ is positive, 0 if Ĝ is 0 and -1 if Ĝ is

negative. See appendices A and B for detailed analysis.

(ĈĦ = Ĉeq ∝ Ĥ) and spin-orbit (mis)alignment (ĊĦ = Ċeq = 0, ÿ)

rapidly.

• The semi-major axis decay rate | Ěė
ĚĪ

| and orbital period decay

rate | ĚĐ
ĚĪ

| increase with eccentricity ě, and hence declines during

tidal evolution.

• The eccentricity decay rate | Ěě
ĚĪ

| has its maximum at ě ≈ 0.658.

• A planetesimal evolves much faster under tide if it starts at a

smaller pericentre distance (for an initially highly eccentric orbit, the

analytical circularization timescale satisfies ăcir ∝ ħ
7.5
0

).

• The general trend of tidal evolution of a white dwarf-

planetesimal system under the CTL model is the decay in eccen-

tricity, semi-major axis and apocentre distance, the increase in the

pericentre distance, accompanied with spin-orbit (mis)alignment and

pseudo-synchronization.

2.2 The Roche limit

If the planetesimal is scattered too close to the white dwarf, the

differential tidal force may lead to rapid disintegration of the body, in

which case tidal evolution is irrelevant. The critical distance where

the gravitational acceleration, the maximum acceleration provided

by ultimate tensile strength, the centrifugal acceleration and the tidal

acceleration add up to 0 is defined as the Roche limit (ĨRoche). Within

the Roche limit, the net acceleration leads to fracture of the body,

referred to as tidal disruption. Tidal disruption ceases at the point

the size of the constituent is reduced to the point where the ultimate

tensile strength is sufficient to support the object. In this study, we

only consider the planetesimals outside the Roche limit. We apply

the model in Bear & Soker 2015; Brown et al. 2017; Brouwers et al.

2022, where the acceleration balance is investigated at the surface

(an alternative model considering a fracture plane is discussed in

Davidsson 1999), further incorporating the pseudo-synchronous spin

of the planetesimal undergoing tidal evolution. The balance among

the four accelerations for a spherical rigid planetesimal (we will

extend our study to non-spherical bodies in Section 4.3) can be

expressed as:

2ăĉ∗ĎĦ

Ĩ3
Roche

+ Ĉ2
ĦĎĦ =

ăĉĦ

Ď2
Ħ

+
ĂĩÿĎ

2
Ħ

ĉĦ
,

(8)

where Ăĩ is the ultimate tensile strength.

The Roche limit can be obtained by solving Eq.8:

ĨRoche =


2ăĉ∗

4
3
ÿăĀĦ +

3Ăĩ
4ĀĦĎ

2
Ħ
− Ĉ2

Ħ



1
3

. (9)

Due to the fact that on the timescales of pseudo-synchronization

(ĈĦ = Ĉeq) and spin-orbit alignment (ĊĦ = 0, ÿ), ė and ě stays nearly

constant, the necessary condition of avoiding tidal disruption after

scattering of the planetesimal, ħ0 > ĨRoche,0 (with ħ0 the initial peri-

centre distance and ĨRoche,0 the initial Roche limit after scattering),

can be obtained by substituting ĈĦ = Ĉeq (ė0, ě0, ĊĦ = 0, ÿ) (see

Table 2 for the expression), and solve the following set of equations:




|ĈĦ | =

√
4ÿăĀĦ

3
+

3Ăĩ
4ĀĦĎ

2
Ħ
−

2ăĉ∗

Ĩ3
Roche,0

|ĈĦ | =
Ĝ2 (ě0 )

(1−ě2
0
)

3
2 Ĝ5 (ě0 )

Ĥ0

ě0 =
č0−ĨRoche,0

č0+ĨRoche,0

, (10)

Eq.10 cannot be solved analytically. However, one can find an

approximated solution using the fact that ĨRoche,0 j č0 (ě0 ≈ 1 −
2ĨRoche,0

č0
, ė0 ≈

č0

2
) usually applies:

|ĈĦ | = |Ĉeq,0 | ≈
33

40

√
2ăĉ∗ĨRoche,0

− 3
2 , (11)

and the Roche limit can be approximated as:

ĨRoche,0 ≈
©­­«

3.36125ăĉ∗

4
3
ÿăĀĦ +

3Ăĩ
4ĀĦĎ

2
Ħ

ª®®
¬

1
3

, (12)

which has a maximum at ĀĦ =
3

4ĎĦ

√
3Ăĩ
ÿă

and is independent ofč0.

Due to the fact that the pericentre distance ħ increases while

Ĉeq decreases with tidal evolution (Section 2.1.2), the condition

ħ0 g ĨRoche,0 is sufficient to avoid tidal disruption assuming that the

properties of the object remain the same.

2.3 Summary

The physical processes considered in this study are summarized

in Fig.1: planetesimals scattered to pericentre distances narrowly

MNRAS 000, 1–18 (2024)
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Scattering

Planetesimals undergoing tidal evolution

Start of the white dwarf phase

White dwarf

Roche limit

Planetesimal belt

PlanetesimalInstability zone

�Āý�āāÿÿ

Tidal bulge
Differential tidal force Deformation Phase/time lag

Equipotential surfaceത�

� = �0 � = �0 + �Āý�āāÿÿ

Little circularization

(Long-period orbit)

Partial circularization

Complete circularization

(Short-period 

circularized orbit)

Some planetesimals are scattered inwards

Tidal evolution�ā�þÿ

Planetesimals end up in a wide range of orbits

Figure 1. A schematic diagram of planetesimals scattered towards a white dwarf that evolve onto shorter-period orbits under tides (face-on view, not to scale).

Three snapshots in time are presented: 1. at the start of the white dwarf phase (upper-left panel), 2. when the planetesimal is initially scattered (upper-right panel),

and 3. after a given tidal evolution time (lower panel) where planetesimals evolve onto a wide range of orbits. The stages of tidal evolution can be categorized

as: complete circularization (purple, small ħ0, short-period circular orbit), partial circularization (green, moderate ħ0) and little circularization (brown, large ħ0,

long-period highly eccentric orbit). The middle panel is a sketch of the tidal effect: 1. the white dwarf exerts a differential tidal force on the planetesimal (left),

2. the planetesimal is deformed, leading to the formation of tidal bulges (middle) and 3. the lag of tidal bulges relative to the equipotential surface (right) leads

to dissipation of orbital energy.

avoiding tidal disruption experience strong tidal force, inducing tidal

bulges that lag behind the equipotential surface, damping orbital

energy, bringing these planetesimals to a wide range of orbits: 1.

short-period circularized orbits (purple), 2. partially circularized or-

bits (green), 3. long-period orbits nearly unaffected by tidal effect

(brown).

For identical two-body system properties, tidal evolution rate in-

creases rapidly with the decreasing initial pericentre distance (Sec-

tion 2.1.2). The initial pericentre distance ħ0 and initial apocentre
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Planetesimal ĀĦ (kg/m3 ) 3000

ĎĦ (km) 100

ćĦ (s) 1000

ÿĦ
2
5

Ăĩ (Pa) 105

White dwarf ĉ∗ (ĉ» ) 0.6

Orbit č0 (AU) 3

Ĉp,0 (Ĉeq,0 (ĊĦ = 0) ) 1

Ċp,0 0

Č (ħ0 ) Č (ħ0 ) ∝ ħ
1
2
0

Table 3. The fiducial set of parameters used in this work to describe a

planetesimal-white dwarf system undergoing tidal evolution. The choice of

ćĦ is motivated by the tidal dissipation of typical rocky bodies (Lambeck

1977; Neron de Surgy & Laskar 1997; Bolmont et al. 2011; Clausen & Tilgner

2015; Barnes 2017; Rufu & Canup 2020; Sánchez et al. 2020; Bagheri et al.

2022). The choices of ĀĦ and Ăĩ are motivated by the physical properties

of chondrites (Ostrowski & Bryson 2019; Pohl & Britt 2020). The choice

of white dwarf mass roughly corresponds to the peak of the observed white

dwarf mass distribution (Kepler et al. 2007; Tremblay et al. 2016; Kepler

et al. 2017).The initial apocentre of the planetesimals, č0, is set such their

orbits did not enter the stellar envelope during the giant branches, i.e. slightly

above the maximum size of the stellar envelopes of 1–3ĉ» stars with solar

metallicity based on MESA isochrones and stellar tracks (MIST, Dotter 2016;

Choi et al. 2016). The initial spin and obliquity are arbitrarily chosen to be

their equilibrium values as they have little effect on the semi-major axis and

eccentricity evolution (see Section 3.1.1).

Calculate the Roche limit Ā�ý�ℎ�
Scattered planetesimals ÿ0

Tidal evolution simulation

Orbital evolution � � , �(�)

System setup�þ, Ā0

Orbital period distribution ÿ(�)
Figure 2. A flow chart presenting the method described in Section 2: 1. initial

setup of a white dwarf-planetesimal system (two-body system properties ĐĦ
and initial apocentre distance č0), 2. compute the Roche limit (ĨRoche), 3.

imitate the scattering process via an initial pericentre (ħ0) distribution whose

lower limit is set by the Roche limit, 4. simulate the tidal evolution, 5. obtain

the time evolution of orbital parameters (ė (Ī ) , ě (Ī )), and 6. compute the

resultant orbital period distribution.

distance č0 of the planetesimal after leaving the instability zone are

shaped by the white dwarf planetary system, which comes with a

wide range of architectures. Instead of simulating the dynamical pro-

cesses delivering planetesimals close to the white dwarf, we introduce

a power law probability density function (PDF) of ħ0 of the plan-

etesimal to imitate the effect of scattering: Č(ħ0 g ĨRoche,0) ∝ ħĂ
0

.

We obtain a population of ħ0 that the planetesimal is scattered to

according to the PDF using the Metropolis algorithm with a sample

size of 105. With the lower limit of ħ0 set by the Roche limit, we set

the upper limit to 0.012 AU, above which the planetesimal’s orbital

period can hardly decay below 1 yr within 1 Gyr, adding difficulties

to observations. The default value of Ă chosen for this study is Ă =
1
2
.

We will discuss the choice of this PDF and the effect of different Ă in

Section 4.2, and show that the resultant orbital period distribution is

qualitatively insensitive to the assumed initial pericentre distribution.

č0 physically represents the inner edge of the scattering zone, which

may vary a lot among different systems. For planets as perturbers,č0

depends on planet-planet interactions (e.g., scattering, resonances)

and planet-star interactions (e.g., tidal interaction, common-envelope

evolution), and is not necessarily equivalent to the semi-major axis

of a planet would have at the end of the asymptotic giant branch

assuming adiabatic orbital expansion under stellar mass loss. We

will discuss the effect of č0 on the circularization timescale and the

orbital period distribution in Section 3.1.2 and Section 4.2.

The default setup of the white dwarf-planetesimal system is listed

in Table 3, unless otherwise stated (see the caption for the motivation

of choices). The properties of exoplanetary bodies, especially the

tidal dissipation efficiency quantified by ćĦ = 3ġ2�Ī, are poorly

constrained, and may be altered during tidal evolution. Knowing

the tidal evolution time and the tidal evolution stage relative to the

initial condition (ė(Ī), ě(Ī), ħ0, č0) is insufficient to disentangle the

parameters within ĐĦ (Eq.7). Furthermore, the constituents of ĐĦ are

not necessarily independent variables. Hence, it is more appropriate

to consider ĐĦ as a whole. However, we will still investigate the

effect of varying the individual constituents of ĐĦ independently

(e.g., density, radius) for illustrative purpose. On the other hand,

as is mentioned in Section 2.1.2, planetesimals starting with same

ħ0 and č0 would have identical orbital parameters at identical ĐĦĪ.

Therefore, for a realistic ĐĦ that is ġ times the assumed value in

this study, one can obtain the realistic counterparts of our simulation

results by substituting Ī
ġ

to Ī.

With the initial orbital parameters and the properties of the

planetesimal-white dwarf system, one can simulate the orbital evo-

lution of a planetesimal.

The method is summarized in Fig.2:

(i) We setup the properties of the two-body system.

(ii) We compute the Roche limit as the lower limit of initial peri-

centre distance of planetesimals.

(iii) We use the Metropolis algorithm to generate a sample of

initial pericentre distance outside the Roche limit according to the

power law probability density function, Č(ħ0 g ĨRoche,0) ∝ ħ
Ă
0

.

(iv) We simulate the tidal evolution of sample planetesimal-white

dwarf systems by linearly interpolating within a pre-simulated grid

of tidal evolution tracks for a range of initial pericentre distances.

(v) We obtain the orbital evolution of planetesimals around white

dwarfs, from which we deduce the orbital period distribution.
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Figure 3. The tidal evolution of the spin (ĈĦ , upper panel) and obliquity (ĊĦ ,

lower panel) of the planetesimal under the CTL model for an initial obliquity

of ÿ4 . We choose ħ0 = 0.01 AU. Each colour corresponds to a different initial

spin expressed as a multiple of the initial equilibrium spin with 0 obliquity

Ĉeq,0 (Ċp = 0) . ė and ě remain identical on the timescale of this plot. Other

choice of free parameters are listed in Table 3.

3 RESULTS

3.1 Tidal evolution under the CTL model

To obtain the orbital period of a planetesimal at a given snapshot in

time, we need to model its orbital evolution. In this section we model

the tidal evolution tracks of sample systems, comparing them to the

analytical analysis in 2.1.2 (3.1.1), and investigate the parameter-

dependence of tidal circularization timescale (3.1.2).

3.1.1 Tidal evolution tracks

In Fig.3, we plot the evolution of spin,ĈĦ (upper panel) and obliquity,

ĊĦ (lower panel) at ħ0 = 0.01 AU for different initial spins (expressed

as the multiple of Ĉeq,0 (ĊĦ = 0)) over 2500 yr. The key features are

summarized below:

• Spin and obliquity converge to their equilibrium values on sim-

ilar timescales (∼ 1000 yr), within which semi-major axis and eccen-

tricity, which decay on much longer timescales (∼ 1 Gyr, see Fig.4,

lower panel) remain unchanged.

• Spin and obliquity converge to the common equilibrium values,

Ĉeq,0 (ĊĦ = 0) and 0, respectively, insensitive to the initial spin and

obliquity.

• A smaller initial spin rate corresponds to a faster obliquity decay

(lower panel, from the blue line to the orange line).

• For large initial spin, there exists temporary increasing obliquity

opposite to the general declining trend (lower panel, orange line).

These features are consistent with the deduced properties of the

CTL model. The key deduction from spin and obliquity evolution

is that the choice of initial spin and obliquity has little effect on the

tidal evolution in ė–ě space.

In Fig.4, we plot the evolution of ĈĦ (solid lines) and Ĉeq (black

dashed lines) for 3 different ħ0: 0.008 AU (blue), 0.009 AU (red) and

0.010 AU (green) for 10 Gyr in the upper panel, together with the

corresponding evolution of ė and ě in the lower panel. In the upper
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Figure 4. The tidal evolution of ĈĦ (solid lines), Ĉeq (black dashed lines)

in the upper panel, which perfectly overlap with each other, and the evolution

of ė (blue lines, left axis), and ě (red lines, right axis) in the lower panel, for

ħ0 = 0.008, 0.009, 0.010 AU. The green lines are ė (1 − ě2 ) (left axis) for

the corresponding ħ0. Other free parameters are listed in Table 3.

panel, the persistent overlap of the solid lines (ĈĦ) and the dashed

lines (Ĉeq (ĊĦ = 0)) indicates that a planetesimal effectively remains

in the pseudo-synchronization and spin-orbit alignment state when

considering the evolution in ė and ě.

The green lines in the lower panel representing ė(1 − ě2) (left

axis) are horizontal, and perfectly overlap with the value that the

blue lines (ė) converge to, indicating conservation of orbital angular

momentum throughout tidal evolution, consistent with Section 2.1.2.

In other words, the initial orbital parameters, ħ0 and č0, determine

the ė–ě relation during tidal circularization and the semi-major axis

after circularization.

On the other hand, as is shown in the lower panel of Fig.4, the con-

vergence of eccentricity always lags behind that of the semi-major

axis, which is consistent with conservation of orbital angular mo-

mentum (Eq.6): Ěėė =
2ě2

1−ě2
Ěě
ě , such that Ěėė k Ěě

ě at large ě and

that Ěėė j Ěě
ě at small ě (or, note that | Ěė

ĚĪ
| decays monotonically to-

wards ě → 0 to 0, while | Ěě
ĚĪ

| decays from its maximum, at ě ≈ 0.658,

towards both ě → 0 and ě → 1, to 0, Section 2.1.2). Consequently,

an orbit is effectively circularized in terms of its orbital period when

the eccentricity is small (ě ≲ 0.01 in Fig.4), and it takes much longer

to reach the true circularization point ě = 0.

With the increase in ħ0 from 0.008 AU to 0.010 AU, the time

required for the semi-major axis (blue lines) to converge increases

rapidly from ∼ 700 Myr to ∼ 4000 Myr, roughly consistent with

ăcir ∼
�� ė
¤ė

��
0
∝ ħ7.5

0
(Appendix B). Furthermore, at same Ī, the orbital

period difference of two planetesimals starting at different ħ0 initially

increases and then decays during tidal evolution, reaching a constant

after both planetesimals are circularized.

3.1.2 Tidal cirularization timescale

If planetesimals are to evolve onto (nearly) circular orbits around

white dwarfs due to tides, this evolution must occur well within the

white dwarf cooling age. In this section we simulate the variation in

circularization timescale (ăcir) in response to the physical properties

MNRAS 000, 1–18 (2024)
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Figure 5. The contour plots of the orbital period of the planetesimal in Ī–ħ0 space (upper-left panel), as well as its counterparts in Ī–č0 space (upper-right panel),

Ī–ĀĦ space (lower-left panel) and Ī–ĎĦ space (lower-right panel) at a fixed ħ0 = 0.008 AU. The axes are all on the logarithmic scale. Other free parameters are

identical to those in Table 3. The dotted lines are the circularization lines, at the right of which ě f 0.01 is satisfied.

ĉ log ăcir
ĉ logħ0

ĉ log ăcir
ĉ logč0

ĉ log ăcir
ĉ logĀĦ

ĉ log ăcir
ĉ logĎĦ

7.8 0.2 1.0 -2.0

Table 4. The gradient of circularization lines on the logarithmic scale in

Fig.5.

of the planetesimal and the initial orbital parameters. We consider

planetesimal size and density as independent variables for demon-

stration only, which is not necessarily realistic.

In Fig.5, we plot the orbital period evolution of the planetesimal

in Ī–ħ0 (upper-left panel), Ī–č0 (upper-right panel), Ī–ĀĦ (lower-

left panel) and Ī–ĎĦ (lower-right panel) space. The dotted lines are

the circularization lines under the condition ě f 0.01, at the right of

which the planetesimal’s orbit is considered to be effectively circular-

ized. We do not use ě = 0 as the condition of circularization because

a nearly circularized orbit is non-distinguishable from, but is reached

much earlier than its circularized counterpart, as mentioned in Sec-

tion 3.1.1. The gradients of circularization lines on the logarithmic

scale are summarized in Table 4. We find out that these gradients

are not sensitive to the numerical condition of circularization (for

instance, the computed gradients are almost identical when setting

the threshold to be ě f 10−4 instead) and other free parameters

(for instance, č0 in the upper-left panel, ħ0 in upper-right and lower

panels).

Clearly, the gradient of the circularization line in the upper-right

panel, corresponding to
ĉ log ăcir

ĉ log ħ0
≈ 7.8, far exceeding the magnitude

of others, indicating that the initial pericentre distance ħ0 dominates

the circularization timescale over other free parameters. The empir-

ical relation ăcir ∝ ħ
7.8
0

(with the scaling insensitive to a wide range

of č0 and ĐĦ) is roughly consistent with the analytically computed

circularization timescale
�� ė
¤ė

��
0
∝ ħ7.5

0
(the difference originates from

the fact that the analytical expression is obtained by expanding ė
¤ė at

Ī = 0, which becomes less accurate as the orbital parameters deviate

from their initial values under tidal evolution). At any snapshot in

time, the orbital period of the planetesimal decreases monotonically

with ħ0. If a planetesimal starts at a smaller pericentre distance, it

would circularize much more rapidly and to a shorter orbital period.

The Roche limit of the planetesimal with the default properties (Ta-

ble 3) is 0.00456 AU, corresponding to a minimum circularization

timescale of ∼ 10 Myr. Therefore, for a white dwarf with a cooling

age of 1 Gyr, there may exist tidally circularized planetesimals unless

the tidal dissipation of exoplanetary bodies quantified by ĐĦ (Eq.7)

is ≳ 100 times smaller than our fiducial value (Table 3). In a regime

where ĀĦ can be considered as an independent variable, and when

the self-gravity far exceeds the material strength, Eq.12 is reduced

to ĨRoche ∝ Ā
− 1

3
Ħ . Therefore, the minimum circularization timescale
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Tidal decay of planetesimals 9

(ăcir ∝ Ĩ
7.8
Roche

ĀĦ) is roughly proportional to Ā−1.6
Ħ , such that increas-

ing planetesimal density from 3000 kg/m3 to 4000 kg/m3 reduce the

minimum circularization timescale to ∼ 6 Myr.

Among the free parameters investigated in this section, the depen-

dence of ăcir on č0 is the weakest, as is shown in the nearly vertical

circularization lines in the upper-right panel of Fig.5 corresponding

to ăcir ∝ č0.2
0

. However, the orbital period of partially circularized

planetesimals (at the left of the circularization lines) are increasingly

affected by č0 at an earlier tidal evolution stage, where a larger č0

corresponds to a ė and hence larger Đ (Ī).

The delayed circularization with the increase in ĀĦ in the lower-left

panel, with ăcir ∝ ĀĦ , and the accelerated tidal circularization with

increasing planetesimal size in the lower-right panel, with ăcir ∝

Ď−2
Ħ , are consistent with the fact that ¤ė and ¤ě are proportional to

ĐĦ ∝ Ď2
ĦĀ

−1
Ħ .

Combining the scaling relations above, we obtain an empirical

scaling relation for the circularization timescale of planetesimals

around white dwarfs under the CTL model:

ăcir ≈ 5000
1000 s

ćĦ

(
0.6ĉ»

ĉ∗

100 km

ĎĦ

)2 ĀĦ

3000 kg/m3

×
( ħ0

0.01 AU

)7.8
(
č0

3 AU

)0.2

Myr.

(13)

3.2 Probability distribution of orbital period

This section predicts the probability distribution of the orbital period

for a planetesimal evolving under tidal interactions (which can be

equivalently interpreted as the orbital period distribution of a popu-

lation of planetesimals with identical properties and tidal evolution

times). The orbital (transiting) period is the key observable to com-

pare with. We note here that the probability distribution of a given

planetesimal (given planetesimal population) is different if plotted

in terms of the planetesimal’s orbital period rather than semi-major

axis, on linear rather than logarithmic scale (see Appendix C).

We investigate the probability distribution in the period space and

on the logarithmic scale for orbital periods f 1 year, since it is more

natural to compare between Č(0.9 day f T f 1.1 day) to Č(90 day f

T f 110 day), instead of comparing between Č(0.9 day f T f

1.1 day) to Č(99.9 day f T f 100.1 day).

In Fig.6, we show 2 snapshots in tidal evolution time: 100 Myr

and 500 Myr of the probability distribution of planetesimal’s orbital

period limited to Đ f 1 yr (histogram, left axis) on the logarithmic

scale, with the zoom-in plot for the short period orbits (Đ f 1 day)

in the linear space. Note that ĐĦ and Ī are entangled such that the

distribution at a tidal evolution time of 100 Myr can be equivalently

understood as a distribution at Ī = 500 Myr but for a planetesimal

with ĐĦ that is 5 times weaker (tidal evolution is simultaneous in

ĐĦĪ space, 2.1.2). The probability distribution is normalised such

that at Ī = 100 Myr, the probability within the cut-off period, 1 yr,

adds up to 1. The dashed line is the minimum circularization period

(Čcir (ĨRoche)) computed from Eq.6 and Eq.10. The solid and dotted

lines are the orbital eccentricity a planetesimal would have at current

orbital period, at a tidal evolution time of 100 Myr and 500 Myr,

respectively.

The key features of Fig.6 are summarized below:

(i) A peak of the probability distribution presents near the tran-

sition between (nearly) circularized and partially circularized orbits

(∼ 10 hr–1 day): an enhanced probability for the planetesimal to re-

side on a (nearly) circularized orbit.

(ii) There is a probability valley after the peak: low probability

for the planetesimal to reside in a partially circularized orbit with an

orbital period between ∼ 1 day and ∼ 100 day.

(iii) There is an increasing tail towards longer-period highly ec-

centric orbits (≳ 100 day).

(iv) As the time of tidal evolution increases (the hatched histogram

versus the blue histogram), the peak of the probability distribution

shifts towards longer period and the contributions from the (nearly)

circularized orbits to the probability distribution increases.

(v) The probability distribution of the (nearly) circularized orbits

is uniform in the linear space (zoom-in plot) and hence linear in the

logarithmic space.

Notably, the pile-up at short-period nearly circularized orbits and

long-period highly eccentric orbits ((i), (ii) and (iii)) is a natural

consequence of the tidal model and the utilization of logarithmic

scale, rather than the initial pericentre distribution. This is shown in

Fig.7, which illustrates that a given bin-width in logarithmic period

space (fixed �Đ
Đ ) covers a wider range of ħ0 towards short-period

nearly circularized orbits and long-period highly eccentric orbits

under tidal evolution. Fig.7 is equivalent to a cumulative distribution

for a uniform distribution in ħ0 and the orbital period distributions

of tidally evolved planetesimals are strongly shaped by the pile-up

illustrated in Fig.7. The physical origin of this pile-up is briefly

explained in Appendix C, from which we can deduce that, as long

as the realistic tidal evolution remains qualitatively similar to the

predictions of the CTL model in terms of:

• semi-major axis decay generally decelerates along the tidal evo-

lution track, converging to 0 at ě = 0,

• a planetesimal closer to the white dwarf at its pericentre under-

goes more rapid tidal evolution,

the qualitative features (i) (ii) and (iii) of the orbital period distri-

bution should persist, regardless of the assumptions regarding the

initial pericentres (see Section 4.2).

On the other hand, the tidal model and the planetesimal population

(e.g., initial pericentre distribution, physical properties) can affect the

orbital period distribution quantitatively. The inner edge of the orbital

period distribution is an indication of the Roche limit, constraining

the physical properties such as density and tensile strength of the

planetesimal. The position of the peak at short-period, indicating the

transition from near-circular to eccentric orbits not only indicates the

tidal evolution stage of the system but also illustrates the maximum

pericentre distance where a planetesimal scattered to can be tidally

circularized within a given timescale. The peak for nearly circular-

ized planetesimals, if presenting at a larger orbital period, indicating

a later tidal evolution stage under the CTL model, i.e., longer tidal

evolution time/stronger tidal interactions ((iv)), because CTL model

predicts that a planetesimal starting with a larger ħ0 circularizes

slower to a longer orbital period. The time evolution of the orbital

period distribution is affected by the dependence of tidal model on the

initial pericentre distance. The orbital period distribution of nearly

circularized orbit, as well as the fraction of nearly circularized to

partially circularized orbits, is related to the initial pericentre distri-

bution. For instance, our choice of PDF Č(ħ0) ∝ ħ
1
2

0
corresponds to

an uniform orbital period distribution in the linear space (linear in

logarithmic period space) for nearly circularized planetesimals ((v),

Appendix C). To summarize, the qualitative features of the orbital

period distribution: peak at short-period nearly circularized orbit

and an increasing tail towards long-period highly eccentric orbits

persist for any tidal evolution that is qualitatively similar to the CTL

model, while the quantitative details of the distribution probes the
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Figure 7. The orbital period and orbital eccentricity a planetesimal scattered

to ħ0 would have at 4 snapshots in time for a range of ħ0. The free parameters

are identical to those in Table 3.

tidal model, as well as the population of planetesimals undergoing

tidal evolution.

4 DISCUSSION

This paper studies an alternate pathway for planetesimals scattered

close to the white dwarf. While planetesimals scattered interior to

the Roche limit are tidally disrupted and accreted by the white dwarf,

planetesimals scattered just outside the Roche limit may undergo tidal

circularization. These tidally evolved planetesimals potentially span

a wide range of orbital periods at a given snapshot in time (Fig.8).

These planetesimals may be responsible for transits observed around

white dwarfs.

The observed light curves for the white dwarfs with photometric

variability are not consistent with the transit of an intact body, but

do contain periodic signatures that could be explained by active dust

production associated with planetary bodies (Vanderburg et al. 2015;

Veras et al. 2017; Duvvuri et al. 2020). If the observed periods corre-

spond to the orbits of planetesimals, this work presents a mechanism

for planetesimals to arrive on short period orbits. Mechanisms that

allow planetesimals on short period orbits to produce photometrical

variability in white dwarfs will be the subject of Paper II in this series

(see Vanderburg et al. 2015; Veras et al. 2017; Duvvuri et al. 2020

for existing models).

Planetesimals that are tidally evolved outside the Roche limit and

their counterparts tidally disrupted inside the Roche limit may co-

exist, with the ratio between them potentially varying in different

systems and different evolutionary stages. The key test of this model

is the distribution of orbital periods in the population of white dwarfs

with observed transits. In this section, we firstly discuss the limita-

tions of the model that affect the predictions made regarding the

orbital period distributions of planetesimals shaped by tidal evolu-

tion, starting with the tidal model (Section 4.1) and the choice of

the initial conditions, which dominate the subsequent tidal evolu-

tion (Section 4.2). Our model predictions are then compared to the

current observations (Section 4.4 and 4.3), before the implications

of an alternative pathway for planetesimals to evolve in white dwarf

planetary systems are discussed (Section 4.5).
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Figure 8. A schematic illustrating two potential pathways to white dwarf pollution from planetesimals scattered inwards by planets. Planetesimals that are

scattered interior to the Roche limit are tidally disrupted and accreted. Planetesimals scattered outside the Roche limit evolve under tides, potentially leading to

a wide range of orbits around the white dwarf.

4.1 Tidal model

Although the details of the prediction for the distribution of orbital

periods of planetesimals orbiting white dwarfs depends on how white

dwarf-planetesimal systems evolve under tide, the general properties

of the distribution, most notably the pile-up of planetesimals on

short-period (nearly) circularized orbits (which originates from the

decelerating decay rate of orbital period during tidal circularization)

is robust. Here we discuss the limitations in our understanding of

how tides act on planetesimals and how these influence the results

presented in this work.

In this study, we utilize the CTL model, which assumes an equilib-

rium tidal bulge lags behind the equipotential surface for a constant

time. The CTL model is a simplified tidal model equivalent to a

rheology where the induced tidal response is proportional to the

corresponding tidal forcing frequency, such that the summed tidal

dissipation efficiency of all forcing frequencies can be characterized

by a single proportionality constant (e.g., ćĦ in this study). On one

hand, high-eccentricity tidal evolution may be fundamentally differ-

ent from its low-eccentricity counterparts because high-eccentricity

tidal interactions mainly occur near the pericentre where an orbital

averaged description as is the case for the CTL model may become

inaccurate, and tidal dissipation may originate from different physics

as is described by the CTL model (for instance, excitation and dissi-

pation of oscillation modes for gas giants and stars) (Press & Teukol-

sky 1977; Moe & Kratter 2018; Vick et al. 2019; Glanz et al. 2022;

Rozner et al. 2022; Vick et al. 2019; Veras & Fuller 2020).

On the other hand, for realistic rheologies, the dependence of tidal

response on the forcing frequency may no longer lie in the linear

regime as is the case for the CTL model (Makarov & Efroimsky

2013; Noyelles et al. 2014; Storch & Lai 2014; Boué & Efroimsky

2019; Veras et al. 2019; Vick et al. 2023). Furthermore, a stable

pseudo-synchronization state may not present at all orbital parame-

ters (Makarov & Efroimsky 2013; Storch & Lai 2014; O’Connor &

Lai 2020; Vick & Lai 2020), making the Roche limit more uncertain

and tidally-induced rotational fission possible. Furthermore, thermal

evolution of the planetesimal under tidal heating may alter its rheol-

ogy, and hence the distribution of tidal energy inside the body, tidal

response, as well as the Roche limit (Tobie et al. 2005; Beuthe 2013;

Zahnle et al. 2015; Seligman et al. 2024), adding complexities to

the physical picture, for instance, runaway melting (tidal response

increases with the degree of melting Seligman et al. 2024), ther-

mal regulation (tidal response decreases with the degree of melting

Zahnle et al. 2015), re-triggered tidal disruption (weakening ulti-

mate tensile strength, increasing degree of deformation, see 4.3) and

thermal destruction (Veras & Fuller 2020). Notably, although tidal

response (for instance,ĐĦ in the CTL model) and tidal evolution time

are degenerate in terms of the orbital parameters (for instance, orbital

period), the thermal history is potentially non-degenerate (rapid heat-

ing versus slow heating). A coupled thermal-tidal evolution model

is required to properly model the tidal circularization of planetesi-

mals around white dwarfs properly, which is beyond the scope of this

study.

The most profound effect of the uncertainties in the tidal model is

whether the tidal circularization timescale for planetesimals are so

long that planetesimals can hardly circularize under tides within the

cooling age of the white dwarfs. If tidal circularization is impossible

throughout the allowed parameter space, the orbital period distribu-

tion in Fig.6 is truncated before the orbital eccentricity approaches

0, such that the probability distribution may increase monotonically

towards longer orbital period and the peak towards the short period

(nearly) circularized orbits does not present (Appendix D). Con-

versely, at a given tidal evolution time, as long as there exists a

parameter space where a planetesimal can become nearly tidally cir-

cularized, we do not expect a qualitative difference in the observed
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orbital period distribution from Fig.6, whose general features are

shaped by the qualitative behaviours of the tidal model (see Section

3.2), although the strength of the features, for instance, the height

and position of the peak at nearly circularized orbits, can vary.

4.2 Population of scattered planetesimals

Given the large potential range in the ways that planetesimals can be

perturbed inwards from an outer planetary system, it is impossible to

constrain the exact population of scattered planetesimals. The popu-

lation of scattered planetesimal is an important input for the model

here, but we will show that the resultant orbital period distribution is

qualitatively insensitive to the relevant free parameters.

The assumed free parameters associated with the scattered plan-

etesimal population around the white dwarf are:

• initial pericentre distance distribution (the likelihood and time

taken of being scattered to a pericentre distance),

• initial apocentre distance (inner edge of the instability zone),

• property of white dwarf-planetesimal systems (ĐĦ and ĨRoche),

• tidal evolution time (the difference between cooling timescale

of the white dwarf and scattering timescale, degenerate with ĐĦ).

In this work we arbitrarily choose a power law PDF to describe the

initial pericentre distribution, motivated by numerical simulations of

scattering (Rodet & Lai 2024). We also note that a realistic initial

pericentre distribution can be approximated as a power series via

Taylor expansion at small ħ0. By investigating the resultant orbital

period distributions corresponding to single power law PDFs of ħ0,

we can recover the commonalities of a realistic orbital period dis-

tribution (with the latter a linear combination of the former). The

power series should not be dominated by terms with large positive

exponents as white dwarf pollutants, which potentially correspond to

scattering into the Roche limit (ħ0 < ĨRoche), is not rare (Zuckerman

et al. 2003, 2010; Koester et al. 2014; Wilson et al. 2019; O’Brien

et al. 2023, 2024; Manser et al. 2024). The exponents are not nec-

essarily integers as the realistic PDF may already contain a power

law(s).

The tidal evolution stage of the planetesimal is quantified by ĐĦĪ,

such that we cannot distinguish a planetesimal with strong tidal re-

sponse but evolves for a short time from its counterpart with weak

tidal response but evolves for a long time. When we vary the tidal

evolution time as a free parameter, one can equivalently consider that

we vary ĐĦ (or both ĐĦ and Ī provided that ĐĦĪ stays the same).

The effect of each parameter on the probability distribution is

plotted in Fig.9 and summarized below:

• Most importantly, varying the free parameters listed above do

not affect the qualitative behaviours of the resultant orbital period

distribution: the presence of a peak at the short-period nearly circu-

larized orbit (∼ 10 hr–1 day) and the increasing tail towards long-

period highly eccentric orbits (∼ 100 day) on the logarithmic scale.

Therefore, these features should persist after a linear combination

of individual orbital period distributions corresponding to different

power law ħ0 distributions and different sets of free parameters.

• If the planetesimal is scattered earlier and experiences longer

tidal evolution/evolves faster under tide, there is a higher probability

for short-period (nearly) circularized orbits (upper-left panel).

• If the planetesimal leaves the scattering zone at a larger apocen-

tre distance, the probability ratio of being on a (nearly) circularized

orbit to its counterpart of being on a partially circularized orbit in-

creases (upper-right panel).

• Increasing the density alone, which reduces the Roche limit, ex-

tends the allowed initial pericentre distance towards smaller values

where tidal circularization is much faster, hence shifting the orbital

period distribution towards shorter orbital period with larger contri-

butions from the (nearly) circularized orbits (lower-left panel).

• Including a density/Roche limit distribution of the scattered

planetesimal leads to a decaying tail towards the shortest orbital

period that is only reachable by the planetesimals with large den-

sity/small Roche limit (lower-left panel, black solid line, also see

Fig.11).

• The initial pericentre distance distribution has non-negligible

impact on the orbital period distribution quantitatively: the contribu-

tions from the (nearly) circularized orbits to the probability distribu-

tion becoming smaller with a decreasing likelihood of being scattered

to a smaller pericentre distance; but not qualitatively (lower-right

panel, see Appendix E for other forms of distributions).

We acknowledge that when tidal circularization is too slow, the

cumulative distributions do not necessarily start at the circularization

period of a planetesimal scattered to the Roche limit as is the case in

Fig.9. Instead, it may truncate (reach 0) at a longer orbital period and

the peak at short-period (nearly) circularized orbits does not present

(Appendix D).

4.3 Tidal disruption or tidal circularization?

Planetesimals scattered sufficiently close to the white dwarf are torn

apart by the differential tidal forces. This work focuses on those

planetesimals scattered insufficiently close to be torn apart, but suf-

ficiently close for tidal forces to circularize them.

This work assumes that the Roche limit delineates the minimum

pericentre of a planetesimal to escape tidal disruption. As planetes-

imals scattered to highly eccentric orbits tidally circularize to an

semi-major axis around twice their initial pericentre distance (2ħ0,

Eq.6) and the circularization timescale of the planetesimal follows

ăcir ∝ ħ7.8
0

(Section 3.1.2), the minimum orbital period a planetes-

imal can circularize to, and the minimum time required for tidal

circularization, are closely related to the lower limit of ħ0: the Roche

limit (ĨRoche). Here we discuss the validity of this assumption and its

implications for the model predictions.

In the previous sections, we estimate the Roche limit assuming that

the planetesimal possesses an ultimate tensile strength of 0.1 MPa

(Table 3), roughly corresponding to the lower limit of the measured

meteroites samples (Pohl & Britt 2020). We now discuss the effect

of this parameter choice, together with the uncertainties in the ulti-

mate tensile strength, and propose potential scenarios involving the

variations of the ĨRoche during tidal evolution.

In Fig.10, we plot the minimum orbital period a planetesimal with

ĎĦ = 100 km can circularized to without undergoing tidal disruption

(Đmin), a representation of the Roche limit, as a function of planetes-

imal density (ĀĦ) and ultimate tensile strength (Ăĩ). We stress that

Đmin is insensitive to č0 (Eq.12) and ĉ∗ (Đmin ∝ ĉ
− 1

2
∗ Ĩ

3
2

Roche
and

ĨRoche ∝ ĉ
1
3
∗ ) since ĨRoche j č0. At Ăĩ ≲ 0.1 Mpa, the plan-

etesimal is in the self-gravity dominant regime where Đmin is nearly

independent of Ăĩ , above which the increase in Ăĩ can significantly

reduce Đmin. Fig.10 shows that an orbital period below ∼ 6 hr can

hardly be explained by a tidally circularized planetesimal with high

density alone: ultimate tensile strength is always required to avoid

tidal disruption.

The hatched rectangular regions in Fig.10 corresponds to the mea-

sured values of Solar System ordinary chondrites (Pohl & Britt 2020),
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Figure 9. The cumulative distribution of planetesimal’s period within 1 year for different evolution time (upper-left panel), initial apocentre distance (upper-right

panel), density (lower-left panel) and initial pericentre distace distribution (lower-right panel). The default free parameters are identical to those in Table 3 unless

otherwise stated. The dashed lines are the minimum circularization period obtained from Eq.6. The black solid lines are the CDFs obtained by summing the

distribution for different tidal evolution time, initial apocentre distance and density uniformly within the range of the legend of each subplot.

which are the most abundant meteorites and may originate from main

belt asteroids (Nesvorný et al. 2009; Nedelcu et al. 2014). A transit-

ing period around/above the predicted Đmin of ordinary chondrites,

Đ ≳ 6 hr, can be explained by a tidally circularized planetesimal with

properties lying in the range of main belt asteroids. On the other hand,

a transiting period significantly below 6 hr potentially indicates the

existence of other physical processes (e.g., partial tidal disruption,

collisions, gravitational instability) and/or a planetesimal with prop-

erties distinguishable from our understanding of rocky planetesimals.

We acknowledge that the effect of ultimate tensile strength decays

with the size of the body (Eq.12) such that a planetesimal with a

smaller size can be circularized to a shorter orbital period without

undergoing tidal disruption when other conditions remain identical.

Furthermore, if the planetesimal is non-spherical, it undergoes tidal

disruption at a larger distance compared to its spherical counterpart

(see Appendix G).

4.3.1 The scale effect of ultimate tensile strength

The ultimate tensile strength potentially suffers from scale effect

such that Ăĩ declines with the size of the body due to the increasing

defects/cracks following the relation (Ahles et al. 2021):

Ăĩ ∝ Ď
−3Ăĩ , (14)

where Ăĩ ranges from 0.1 to 0.7 (Popova et al. 2011). Compared to

a cm-sized fragment of the planetesimal, there is at least a factor of

∼ 100 reduction in the ultimate tensile strength for a planetesimal

with ĎĦ = 100 km. This reduction factor brings the hatched region

corresponding to the properties of ordinary chondrites in Fig.10 to

self-gravity dominant regime where Đmin ≳ 8 hr.

We acknowledge that the declining trend in ultimate tensile

strength with sample size remains uncertain, as the ultimate tensile

strength may be more closely related to the composition, mineral-

ogy and thermal history of the body, which vary a lot even within

the same group of bodies (Pohl & Britt 2020), and are clearly dis-
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Figure 10. The minimum orbital period that a spherical and rigid planetesimal

can circularize to without being tidally disrupted in ĀĦ–Ăĩ space. Other

system properties are listed in Table 3. The x-axes terminate at the density

of iron and the hatched rectangle represents the estimated property range of

ordinary chondrites (H chondirtes, L chondrites, and LL chondirtes) (Pohl &

Britt 2020).

tinguished between the experimentally measured meteorite samples

and planetesimals we consider in this study. We highlight the impor-

tance of this parameter for the results of this study, despite the large

uncertainties of the value it would take in an exoplanetary system.

4.3.2 Other potential scenarios

In this study, we assume that the Roche limit corresponds to a hard

cut-off, hence neglecting planetesimals scattered inside the Roche

limit. In reality, tidal disruption of a planetesimal may take multiple

orbits (Guillochon et al. 2011; Veras et al. 2017), especially when the

planetesimal only enters its Roche limit briefly near the pericentre

distance. For a realistic object, tidal disruption may also depend on

the density gradient, chemical gradient and the rheology of the body

(see Sridhar & Tremaine 1992 for an example of an object composed

of viscous fluid).

There may exist a scenario where the planetesimal undergoes

partial tidal disruption as well as tidal evolution. As the pseudo-

synchronous spin rate decays (Fig.4, upper panel) and the pericentre

distance increases with tidal evolution, the planetesimal migrates

away from the shrinking Roche limit and tidal disruption ceases.

Meanwhile, thermal evolution of the planetesimal accompanied

with tidal evolution may alter its shape, and the ultimate tensile

strength, which potentially correlates with size, porosity, composi-

tion, mineralogy and thermal history (Pohl & Britt 2020), altering

the Roche limit. The ultimate tensile strength may be correlated with

the degree of deformation of the object (for instance, consider the

correlation between ultimate tensile strength and Young’s modulus).

If Ăĩ is reduced and the planetesimal becomes more deformed (e.g.,

due to melting) during tidal evolution, the resultant increase in the

Roche limit potentially re-triggers tidal disruption.

4.4 Comparison to the observed transiting systems

This work presents a model that predicts a population of planetes-

imals on a wide range of orbital periods around the white dwarf,

potentially responsible for the observed transits. In this section, the

single-body probability distribution obtained in Section 3.2 is ex-

panded to a population of planetary systems, accounting for a vari-

ety of two-body system properties and tidal evolution stages, thus,

mimicking the diversity of the chanced observations of transits. The

predicted probability distribution is compared to the current obser-

vations in Fig.11 and summarized in Table 5.

To deduce the orbital parameters of a planetesimal around a white

dwarf under tidal evolution, one need to know 1. the tidal evolution

track of the planetesimal in ė–ě space (constrained by initial orbital

parameters ħ0 and č0) and 2. the position of the planetesimal on

the tidal evolution tracks (the tidal evolution stage). Therefore, the

corresponding minimum set of distributions required to account for

the diversity of transiting systems is: 1. an initial orbital parame-

ter distribution (ħ0, č0) and 2. a tidal evolution stage distribution

(multiple of tidal evolution time and tidal response, ĐĦĪ).

Fig.11 shows the orbital period distribution (left axis, histogram),

together with a sampled eccentricity (black dots, right axis) and

the cumulative distribution (black line, right axis). The normalised

probability distribution is calculated by considering a uniform range

of potential evolution times (from Ī = 0 to Ī = 500 Myr, with an

interval of 5 Myr) and planetesimal densities (ĀĦ = 2000–8000 kg ·

m−3 with an interval of 500 kg · m−3). We assume that the ultimate

tensile strength Ăĩ increases linearly with ĀĦ from 1 × 105 Pa to

4 × 108 Pa (motivated by Ostrowski & Bryson 2019; Pohl & Britt

2020). The planetesimals are assumed to possess two č0, 3 AU and

5 AU with equal probability. Other parameters are identical to those

listed in Table 3. Although our choices are arbitrary, one may expect

that the predictions remain qualitatively similar for a range of free

parameter distributions (see Section 4.2).

The observed transiting systems are generally consistent with our

predictions: 1. more frequent short-period orbits plus a small en-

hancement towards longer period and 2. a higher probability towards

the transition around the (nearly) circularized and partially circular-

ized orbits. However, current observations are too few and do not

form an unbiased distribution to compare with the simulated distri-

bution. We note here that in reality, the probability of detecting a

transiting planetesimal with a measured period may differ from the

probability of having a planetesimal on such an orbital period (see

Appendix F). Here we discuss each system individually.

4.4.1 WD 1145+017

The transiting planetesimal around WD 1145+017 is most likely in a

circularized orbit, with a normalised probability of 1.8%. The 4.5 hr

period is very close to the lower limit of the probability distribution.

Within the context of this model, planetesimals are only circularized

onto such a short-period orbit, if they undergo partial tidal disruption

or possesses high ultimate tensile strength (Section 4.3). According

to Fig.10 Ăĩ ≳ 130 MPa, which is of similar order of magnitude as

the measured values for iron meteorites (Pohl & Britt 2020; Ahles

et al. 2021), is required, if the planetesimal with ĎĦ = 100 km is

to avoid tidal disruption. Alternatively, if the planetesimal possess

similar properties to ordinary chondritres, it must be smaller than

∼ 50 km to avoid tidal disruption, well below the predicted value

(Rappaport et al. 2016).

Interestingly, if the planetesimal orbiting WD 1145+0117 were to

have the maximum ultimate tensile strength measured for meteorites,

∼ 400 MPa (Ostrowski & Bryson 2019; Pohl & Britt 2020), the

maximum radius of a planetesimal that would avoid tidal disruption

is∼ 180 km, which is similar to the predicted size via the drift periods
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Figure 11. The probability distribution of orbital periods of a population of planetesimals, orbiting a population of white dwarfs under tidal evolution. Full

details can be found in Section 4.4. Both the x-axis and the bin width are on the logarithmic scale. The black solid line is the cumulative distribution (right axis).

The black dots are 10000 randomly sampled orbital eccentricities (right axis). The inferred period seen in the optical transits of WD 1145+017 (blue circle),

ZTF J0139+5245 (red triangle), ZTF J0328-1219 (green crosses) and WD 1054–226 (purple diamond) are shown (Vanderburg et al. 2015; Vanderbosch et al.

2020, 2021; Farihi et al. 2022). The red shaded region is the range of minimum orbital period achievable by Solar System ordinary chondrites (Čmin,O) as is

predicted in Fig.10 (the hatched region).

System Mass (ĉ») Cooling age (Myr) Period Predicted eccentricity Predicted normalised probability (%)

WD 1145+017 0.6 175 4.5 hour 0 1.8

ZTF J0139+5245 0.52 - 107.2 day ∼ 0.98 0.9

ZTF J0328-1219 0.73 1840 9.9 hour ∼ 0 6.4

11.2 hour ∼ 0 7.1

WD 1054–226 0.62 1300 25 hour ∼ 0.2–0.6 1.2

Table 5. A list of the properties of the observed transiting systems (Vanderburg et al. 2015; Vanderbosch et al. 2020, 2021; Farihi et al. 2022), together with the

predicted orbital eccentricity and normalised (relative) probability (which, qualitative speaking, is insensitive to the number of bins of the histogram) based on

the simulated distribution in Fig.11.

(Rappaport et al. 2016), potentially suggesting that the planetesimal

already underwent partial tidal disruption.

We acknowledge that WD 1145+017 is an extreme of our model,

with strict constraints on its properties (such an object may be quite

rare, but not impossible, see e.g., Manser et al. 2019). Whilst this

object can be explained in the context of the theory presented here,

it does pose the question of why such an extreme case represents the

first discovery of a white dwarf with optical transits. One possible

explanation is the enhanced transit probability and signal-to-noise

ratio towards smaller initial pericentre distance/smaller circulariza-

tion period (Appendix F). Additionally, the exact tidal response of a

body with the properties required to explain WD 1145+017, is not

well understood and we acknowledge that some uncertainties remain

in whether such a body can tidally circularize within the cooling age

of WD 1145+017.

4.4.2 ZTF J0139+5245

The transiting period of ZTF J0139+5245 is best explained by a

highly eccentric orbit with ě ∼ 0.98 and lies in the increasing trend

of the predicted probability distribution towards long period, with

a normalised probability of 0.9%. We postulate four reasons why

long-period orbits may dominate this system (based on Section 4.2):

1. planetesimals are rarely scattered close to the white dwarf, 2.
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planetesimals originate from close to the white dwarf (a close-in

perturber due to e.g., planet-planet scattering or common envelope

event), 3. planetesimals generally evolve slower under tides compared

to our predictions, and 4. scattering takes longer (due to e.g., low mass

perturbers).

4.4.3 ZTF J0328-1219

The transiting periods of ZTF J0328-1219 which most likely corre-

spond to two (nearly) circularized orbits are close to the peak of the

predicted probability distribution, with a normalised probability of

6.4% and 7.1%, respectively, corresponding to a combined probabil-

ity of ∼ 9% of having two such planetesimals at the same time. As

the peak of the distribution indicating the transition between (nearly)

circularized orbits and partially circularized orbits shifts towards a

longer orbital period with increasing ĐĦĪ (3.2), the maximum proba-

bility of observing the two transiting periods around ZTF J0328-1219

is reached for a earlier tidal evolution stage: shorter tidal evolution

time/weaker tidal response (8.8% and 8.5% for Ī = 0–100 Myr).

According to our model, properties of ordinary chonrites is suffi-

cient for planetesimals to circularize onto the 9.9 hr and 11.2 hr orbits

without undergoing tidal disruption, even when including scale effect

and accounting for non-spherical bodies (see Appendix G).

4.4.4 WD 1054–226

The transiting period of WD 1054–226 most likely corresponds to a

partially circularized orbit, whose eccentricity ranges from ∼ 0.2 to

∼ 0.6 according to our model, with a probability of 1.3%.

We cannot constrain the properties of planetesimals around

ZTF J0139+5245 and WD 1054–226 as there is no direct relation

between orbital period and initial pericentre distance for partially

circularized orbits.

4.5 Implications

In this work, we study a potential evolution pathway of white dwarf

planetary systems: planetesimals scattered barely outside the Roche

limit undergoes tidal circularization (declining semi-major axis and

eccentricity). This has crucial consequences for our view of planetary

systems orbiting white dwarfs, with more objects potentially popu-

lating the inner regions closer to the white dwarf than previously

thought. If these planetesimals control the periodic signals found

in optical photometric monitoring of many white dwarfs, this sce-

nario has testable observational consequences. Future observations

should find a distribution of periods in the systems with optical tran-

sits that accumulates at both short-period (nearly) circularized orbits

(∼ 10 hr), and at long-period highly eccentric orbits (≳ 100 day).

This work highlights the importance of current and future observ-

ing facilities finding new candidate transiting systems, together with

follow-up observations confirming their transiting periods. Those

objects transiting with short periods that are likely on near-circular

orbits has the following advantages:

• They provide the best potential tests for models of high eccen-

tricity tidal migration.

• Their orbital period may help constrain where the tidally evolved

planetesimals originate from and their properties.

• Practically, it is easier to constrain their orbital periods using

dedicated high-speed photometric follow-up observing campaign in

comparison to their long-period counterparts.

Optical transits around white dwarfs are only found in systems

where planetary material has been accreted. Given the active dust

production potentially required to produce the observed transit sig-

natures, these systems provide an important clue in our understanding

of how planetary material is accreted by white dwarfs. A better un-

derstanding of the evolution of white dwarf planetary systems will

benefit the interpretation of planetary material accreted by white

dwarfs that are used to probe the composition of exoplanetary bod-

ies.

5 CONCLUSIONS

Planetary systems around white dwarfs are important targets to inves-

tigate the composition of exoplanetary systems. Transits of a handful

of polluted white dwarfs provide key observational evidence regard-

ing how planetary material is accreted. A number of mysteries remain

regarding the exact details of the accretion process.

In this work, we investigate tidal circularization of planetesimals

scattered close to white dwarfs exterior to the Roche limit. Tidally

evolved planetesimals are predicted to exist on a wide range of orbital

periods, potentially linked to the photometric variability of a handful

of polluted white dwarfs, with the orbital periods of the planetesimals

controlling the periodic signals seen in the optical data.

Our simulations predict that under tidal evolution, there exists a

population of planetesimals on short-period (nearly) circularized or-

bits around white dwarfs (peaking at ∼ 10 hour–1 day), potentially

represented by systems such as WD 1145+017, ZTF J0328-1219 and

WD 1054–226. Alongside these, there is a population of planetesi-

mals on long-period highly eccentric orbits (∼ 100 day) such as seen

for ZTF J0139+5245 exist, together with a low probability of finding

planetesimlas on orbital periods of ∼ 1 day–100 day.

While the orbital periods of most transiting systems can be ex-

plained by tidally evolved planetesimals with properties similar to

Solar System ordinary chondrites, in order to avoid tidal disruption,

the planetesimal on the 4.5 hour period around WD 1145+017 must

possess an ultimate tensile strength of the same order of magnitude

as iron meteorites.

Currently, this field is limited by the small number of transiting

systems characterised so far. Whilst the current observations are in-

line with the theory presented here, the true test will be comparison of

the prediction orbital distribution with the results of the many current

and future optical photometric monitoring surveys, including ZTF

and Roman Observatories.
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Appendices

Yuqi Li

June 26, 2025

A Simplified tidal evolution equations

In order to illustrate the properties of the CTL model (Hut, 1981; Levrard et al., 2007;

Leconte et al., 2010; Matsumura et al., 2010; Bolmont et al., 2011; Heller et al., 2011;

Beaugé & Nesvorný, 2012; Hansen, 2012; Glanz et al., 2022; Rozner et al., 2022; Lu et al.,

2023) more clearly, we simplify the coupled tidal evolution equations based on the fact that

the orbital angular momentum of a white dwarf-planetesimal system is conserved:

ė(1 − ě2) = 2ħ0č0

ħ0 +č0

, (A1)

and the fact that the planetesimal reaches pseudo-synchronization and spin-orbit (mis)alignment

rapidly. In this case the coupled tidal evolution equations are simplified to:

Ěě

ĚĪ
= 9ăĐĦċ−8Ăě (ě), (A2)

Ěė

ĚĪ
= 2ăĐĦċ−7Ăė (ě), (A3)

Ĉeq =
[
ă (ĉĦ + ĉ∗)

] 1
2

(
ħ0 +č0

2ħ0č0

) 3
2 Ĝ2(ě)
Ĝ5(ě)

, (A4)

Ċp =




0 0 f Ċp,0 < ÿ
2

ÿ ÿ
2
< Ċp,0 f ÿ

, (A5)

where ĐĦ, ċĢ Ăě (ě) and Ăė (ě) are given by:

ĐĦ ≡
ćĦ (ĉĦ + ĉ∗)ĉ∗Ď5

Ħ

ĉĦ

≈
ćĦĉ

2
∗ Ď

5
Ħ

ĉĦ

∝
ćĦĉ

2
∗ Ď

2
Ħ

ĀĦ
, (A6)
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ċĢ ≡
(

2ħ0č0

ħ0 +č0

) Ģ
, (A7)

Ăě (ě) = ě(1 − ě2) 3
2

[
11

18

Ĝ2(ě) Ĝ4(ě)
Ĝ5(ě)

− Ĝ3(ě)
]
, (A8)

Ăė (ě) = (1 − ě2)− 1
2

[
Ĝ 2
2
(ě)

Ĝ5(ě)
− Ĝ1(ě)

]

. (A9)

We can deduce the following properties of the CTL model:

• Tidal evolution track in ė–ě space is determined by Ăě (ě)/Ăė (ě), which means that it

is fixed for a given set of (ħ0, č0).

• Tidal evolution rates in both ė and ě are scaled by ĐĦ, such that for a fixed (ħ0, č0),
ĐĦĪ determines the tidal evolution stage (tidal evolution is simultaneous in ĐĦĪ space).

• At identical ě and for ħ0 j č0, ċĢ indicates that a planetesimal starts at a smaller ħ0

evolves much faster.

•
Ěě
ĚĪ

∝ Ăě (ě) f 0 has its minimum at ě ≈ 0.658, converging to 0 at both ě → 0 and

ě → 1,

•
Ěė
ĚĪ

∝ Ăė (ě) f 0 decreases monotonically with ě, converging to 0 at ě → 0.

•
ĚĐ
ĚĪ

∝ ė 1
2
Ěė
ĚĪ

∝ (1−ě2)− 1
2 Ăė (ě) f 0 has the same qualitative behaviour as Ăė (ě) while

decreasing more strongly with ě.

• Pseudo-synchronous spin rate of the planetesimal decreases along the tidal evolution

track.

B Analytical tidal circularization timescale

One can approximate the circularization timescale by analyzing | ė¤ė |0 in the limit of ħ0 j č0

(ě0 =
2č0

ħ0+č0
− 1 → 1). We expand the terms in the square brackets in Eq.A9 at ě0 = 1 such

that:

[
Ĝ 2
2
(ě0)

Ĝ5(ě0)
− Ĝ1(ě0)

]

≈ −4059

320
− 264(ě0 − 1)

5
. (B1)

We then expand at
ħ0

č0
= 0 and get:

2



����
¤ė
ė

����
0

≈ 2ăĐĦ

(
2ħ0č0

ħ0 +č0

)−8

(1 − ě2
0)

1
2

[
4059

320
− 264(1 − ě0)

5

]

≈ 2ăĐĦ
4059

320
(2ħ0)−8

(
4
ħ0

č0

) 1
2

≈ 0.2ăĐĦħ
−7.5
0 č−0.5

0 ,

(B2)

such that ăcir ≈ 5
ăĐĦ

ħ7.5
0
č0.5

0
, increasing much more rapidly with ħ0 than č0 and ĐĦ.

C Interpretations of orbital period distribution

In this section we focus on the case where ě → 0 and ħ0 j č0. We will use the fact that on

the logarithmic scale, the widths of the bins of the orbital period distribution histogram �Đ

satisfies �Đ
Đ

= constant, while on the linear scale, �Đ is a constant.

Eq.A1 implies:

2�ħ0 = (ė + �ė) [1 − (ě + �ě)2] − ė(1 − ě2), (C1)

where �ė = ė(ħ0 + �ħ0) − ė(ħ0), and �ě = ě(ħ0 + �ħ0) − ě(ħ0).
Kepler’s third law implies that:

ė = ýĐ
2
3 ,

�ė

ė
= (1 + �Đ

Đ
) 2

3 − 1,
(C2)

where ý is a positive proportionality constant.

Eq.C1 and Eq.C2 combine to give:

2�ħ0 = ė(1 + �Đ

Đ
) 2

3 [1 − (ě + �ě)2] − ė(1 − ě2), (C3)

where �ħ0 = ħ0(Đ +�Đ) −ħ0(Đ) (for the orbital period distribution histogram, �Đ is the bin

width and Đ is its inner bin edge). By substituting ė(1 − ě2) = 2ħ0, Eq.C3 can be expressed

as:

�ħ0

ħ0

= (1 + �Đ

Đ
) 2

3

[
1 − (ě + �ě)2

1 − ě2

]
− 1. (C4)

After applying the PDF Č(ħ0) ∝ ħĂ0 , one can write (for Ă ≠ −1):

3



Č( [Đ,Đ + �Đ]) = Č( [ħ0, ħ0 + �ħ0])

=

∫ ħ0+�ħ0

ħ0

Č(ħ′0)Ěħ
′
0

= ĊĂ

[
(ħ0 + �ħ0)Ă+1 − ħĂ+1

0

]

= ĊĂħ
Ă+1
0

�����

(
1 + �Đ

Đ

) 2
3 Ă+

2
3
[
1 − (ě + �ě)2

1 − ě2

] Ă+1

− 1

�����

= ĊĂ

(
ý

2

)Ă+1

Đ
2
3 Ă+

2
3×

�����

(
1 + �Đ

Đ

) 2
3 Ă+

2
3 [

1 − (ě + �ě)2
] Ă+1 − (1 − ě2)Ă+1

�����
,

(C5)

where ĊĂ is a positive normalisation constant for Ă. When Ă > −1, the absolute value

signs in Eq.C5 can be omitted. A positive Ă is usually expected as it is less likely for a

planetesimal to be scattered to a smaller pericentre distance (Rodet & Lai, 2024) but we will

discuss the case where Ă < 0 for completeness.

For Ă = −1, we have:

Č( [Đ,Đ + �Đ]) = Č( [ħ0, ħ0 + �ħ0])
= Ċ−1 [ln (ħ0 + �ħ0) − ln ħ0]

= Ċ−1 ln

(
1 + �ħ0

ħ0

)

= Ċ−1 ln

{(
1 + �Đ

Đ

) 2
3
[
1 − (ě + �ě)2

1 − ě2

]}

.

(C6)

For (nearly) circularized orbits (ě → 0, �ě → 0, ė = 2ħ0), we have, for Ă ≠ −1:

Č( [Đ,Đ + �Đ] |ě → 0) = ĊĂ

(
ý

2

)Ă+1

Đ
2
3 Ă+

2
3

�����

(
1 + �Đ

Đ

) 2
3 Ă+

2
3

− 1

�����
, (C7)

where a special point is Ă =
1
2

(the fiducial value used in the main text), such that:

Č( [Đ,Đ + �Đ] |ě → 0) = Ċ 1
2

(
ý

2

) 3
2

�Đ, (C8)

which returns a uniform distribution on the linear scale where �Đ = constant (see the zoom-

in plot of Fig.6 in the main text). Meanwhile, on the logarithmic scale where �Đ
Đ

= constant,

we have:

Č( [Đ,Đ + �Đ] |ě → 0) = þĐ 2
3 Ă+

2
3 , (C9)
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where þ = ĊĂ

(
ý
2

)Ă+1
����
(
1 + �Đ

Đ

) 2
3 Ă+

2
3 − 1

���� is a constant. For Ă =
1
2
, the probability distri-

bution is linearly proportional to Đ for (nearly) circularized orbits, consistent with Fig.6 in

the main text.

For Ă = −1, we have:

Č( [Đ,Đ + �Đ] |ě → 0) = 2

3
Ċ−1 ln

(
1 + �Đ

Đ

)
, (C10)

which returns a uniform distribution on the logarithmic scale where �Đ
Đ

= constant (see the

lower-right panel of Fig.8 in the main text where the CDF is linear on the logarithmic scale).

The analysis above indicates that the probability distribution of the period for (nearly)

circularized orbits help probe the initial pericentre distance distribution. This is expected as

ė (and hence Đ) is directly related to ħ0 for (nearly) circularized orbits.

On the other hand, the probability distribution for non-zero eccentricity is not straight-

forward. We provide a conceptual interpretation here. Imagine two planetesimals starting

at identical č0 but different ħ0 with ħ0 j č0, such that they possess similar initial semi-

major axis and initial orbital period. Then, when we start the tidal evolution, Eq.B2 implies

that the ė and Đ of the planetesimal starts at a smaller ħ0 decays much faster. Therefore,

the difference in Đ of these two planetesimals increase, such that these two planetesimals

become more loosely packed in period space. Now, consider a second scenario where the

planetesimal starting at a smaller ħ0 is nearly circularized, such that its | ĚĐ
ĚĪ

| converges to

0, while its counterpart is still on a partially circularized orbit. In this scenario, as Đ of the

planetesimal with a larger ħ0 continues to decrease towards its minimum (which is larger

than its counterpart), the difference in Đ of these two planetesimals declines and these two

planetesimals become more closely packed in period space. The decay of the difference in

Đ continues until the planetesimal starting at a larger ħ0 is (nearly) circularized, where these

two planetesimals are in the most closely packed state (see the lower panel of Fig.4 in the

main text). To sum up, tidal circularization looses the packing of orbits in period space at

an early tidal evolution stage and then tightens the packing towards short-period (nearly)

circularized orbits. Hence, planetesimals tend to pile up towards short-period (nearly) cir-

cularized orbits and long-period highly eccentric orbits. These scenarios are shown in Fig.4

and Fig.7 in the main text. In Fig.4, the orbital period difference of two planetesimals

starting at different ħ0 initially increases and then decays during tidal evolution, reaching a

constant after both planetesimals are circularized. In Fig.7, the initially closely packed orbits

in period space at Ī = 0 looses between Đ ∼ 1 day and Đ ∼ 100 day. Towards Đ ≲ 1 day,

the nearly circularized orbits become more closely packed where a given �Đ covers a larger

�ħ0. These features are consistent with the obtained orbital period distribution in Fig.6 in

the main text.
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Figure D1: Same plot as Fig.6 in the main text, but for shorter tidal evolution timescales,

Ī = 5 Myr and Ī = 10 Myr. The distribution is normalised with respect to Ī = 5 Myr.

D Orbital period distribution at an early tidal evolution phase

In Fig.D1 and Fig.D2, we plot the short tidal evolution time/weaker tidal response (note that

Ī and ĐĦ are degenerate such that tidal evolution is simultaneous in ĐĦĪ space) counterparts

to Fig.6 and the upper-left panel of Fig.8 in the main text. In Fig.D1, one can see that

the peak towards short period is not present at a tidal evolution time of 5 Myr, where the

minimum eccentricity is around 0.8. At a tidal evolution time of 10 Myr, the peak appears

as the minimum eccentricity approaches 0. Similarly, in Fig.D2, the CDF truncates before

the minimum orbital period (dashed line) for a tidal evolution time of 6 Myr and 7 Myr.

However, at a tidal evolution time of 7 Myr, there already exists a small peak (see the

gradient of the CDF) towards the shortest orbital period.

E Cumulative distribution of orbital period for different forms

of initial pericentre distribution

In Fig.E1, we plot the resultant orbital period distribution for different forms of probability

density function of ħ0. The qualitative features: a peak at the short-period nearly circularized

orbits (∼ 10 hr–1 day) and the increasing tail towards long-period highly eccentric orbits

(∼ 100 day) on the logarithmic scale persists.
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Figure D2: Same plot as the upper-left panel of Fig.9 in the main text, but for shorter tidal

evolution timescales.

F Observational probability

The transit probability of a planetesimal can be expressed as (Barnes, 2007):

Čtransit =
Ď∗ + Ďeff

ė(1 − ě2)
, (F1)

where Ďeff is the maximum extent of the planetesimal in the direction perpendicular to the

orbital plane that is optically thick. By using Eq.A1, one can write:

Čtransit =
(Ď∗ + Ďeff ) (ħ0 +č0)

2ħ0č0

, (F2)

which decreases with the increase in ħ0.

The transit duration of a planetesimal can be expressed as (Tingley & Sackett, 2005;

Burke, 2008):

ătransit =
2(Ď∗ + Ďeff )Ĩ

√
ă (ĉ∗ + ĉĦ)ė(1 − ě2)

√

1 − Ĩ2 cos2 ğ

(Ď∗ + Ďeff )2
, (F3)

where Ďeff depends on the shape, extent of the optically thick region and the orbital inclination

ğ, Ĩ =
ė (1−ě2 )
1+ě cos Ĝ

is the distance of the planetesimal from the white dwarf with Ĝ the true

anomaly.
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Figure E1: The cumulative distribution of planetesimal’s period within 1 year for different

forms of initial pericentre distribution.
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For a random viewing angle, it is more natural to compute the spatial (uniformly dis-

tributed true anomaly) or temporal average (a Ĝ (Ī) distribution with Ī uniformly distributed

between 0 and orbital period) of Eq.F3. In the limit of ğ → 90◦, where Ďeff represents

the maximum extent of the planetesimal in the orbital direction that is optically thick, the

averaged Eq.F3 is:

< ătransit >spatial =
2(Ď∗ + Ďeff )

√
ă (ĉ∗ + ĉĦ)ė(1 − ě2)

1

2ÿ

∫ 2ÿ

0

ĨĚĜ

=
2(Ď∗ + Ďeff )ė

√
1 − ě2

√
ă (ĉ∗ + ĉĦ)ė(1 − ě2)

=
2(Ď∗ + Ďeff )ė

1
2

√
ă (ĉ∗ + ĉĦ)

∝ ė
1
2 ,

(F4)

< ătransit >time =
2(Ď∗ + Ďeff )

√
ă (ĉ∗ + ĉĦ)ė(1 − ě2)

1

Đ

∫ Đ

0

ĨĚĪ

=
2(Ď∗ + Ďeff )ė(1 + ě2

2
)

√
ă (ĉ∗ + ĉĦ)ė(1 − ě2)

∝ ė
1
2 (1 + ě2

2
) (1 − ě2)− 1

2 .

(F5)

The transit duration is closely correlated with the signal-to-noise ratio (von Braun et al.,

2009):

SNR =

√√√ (ĚtransitĊtransit)2

∑
ğ

[
Ċ2
ğ
( Ă

2
ĭ

Ċğ
+ Ă2

Ĩ )
] , (F6)

where Ětransit is the transit depth, Ċtransit is the total number of data points collected during

all the transits, Ċğ is the number of data points collected during the ğth transit, such that
∑

ğ Ċğ = Ċtransit, with ğ ranging from 1 to the nearest integer of
ăobs

Đ
, Ăĭ and ĂĨ represents

white noise and red noise. Assuming identical observational conditions, we have Ċtransit ∝
ătransit

Đ
and Ċğ ∝ ătransit,

∑
ğ Ċ

2
ğ ∝ ă2

transit

Đ
.

We investigate the SNR in two limiting cases. In the white noise dominant limit:

SNRĭ ∝
√
Ċtransit ∝

√
ătransit

Đ
∝ √

ătransitė
− 3

4 , (F7)

which can be expressed in ė and ě by substituting Eq.F4 or Eq.F5.

In terms of the spatial average, the SNR in the white noise dominant limit is:

SNRw,s ∝ ė−
1
2 . (F8)
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In terms of the time average, the SNR can be expressed as:

SNRw,t ∝ ė−
1
2 (1 + ě2

2
) 1

2 (1 − ě2)− 1
4

∝
(
ħ0 +č0

2ħ0č0

) 1
2
(
−ě6

4
− 3ě4

4
+ 1

) 1
4

,

(F9)

which increases with the decreasing initial pericentre distance and decreasing orbital eccen-

tricity.

In the red noise dominant limit, the SNR is independent of the transit duration:

SNRĨ ∝

√
Ċ2

transit∑
ğ Ċ

2
ğ

∝
√

1

Đ
∝ ė−

3
4 , (F10)

which decreases with the increasing orbital period.

In summary, as short-period (nearly) circularized planetesimals usually start with small

ħ0 (tidal circularization timescale increases most rapidly with ħ0), they tend to possess large

transit probability and large SNR. The SNR generally decays towards an earlier stage of tidal

evolution (larger ė, Đ and ě). On the other hand, as a population of planetesimals could be in

a wide range of tidal evolution stages due to different tidal evolution time and tidal response,

a planetesimal on a long-period highly eccentric orbit (early tidal evolution stage) does not

necessarily have a low transit probability.

G The Roche limit of non-spherical objects

We consider two simple non-spherical bodies: an oblate spheroid and a prolate spheroid

with semi-minor axis (short axis) to semi-major axis (long axis) ratio Ĝ . We further assume

that the semi-minor axis of the non-spherical planetesimal is the spin axis, and that the mass

and density of the non-spherical planetesimal is identical to its spherical counterpart.

Similar to the spherical case (Section 2.2 in the main text), the balance for an oblate

spheroid can be expressed as (using the gravitational potential in Davidsson, 1999):

2ăĉ∗ė

Ĩ3
Roche

+ Ĉ2
Ħė = ăýĥ ( Ĝ )ĀĦė + Ăĩÿ Ĝ ė

2

ĉĦ

, (G1)

where ė is the semi-major axis of the planetesimal, ĉĦ =
4
3
ÿĎ3

ĦĀĦ =
4
3
ÿ Ĝ ė3ĀĦ, ýĥ ( Ĝ ) is

of the form:

ýĥ ( Ĝ ) =
2ÿ Ĝ

(1 − Ĝ 2) 3
2

tan−1

√
1

Ĝ 2
− 1 − 2ÿ Ĝ 2

1 − Ĝ 2
. (G2)
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Figure G1: The minimum orbital period that a spherical planetesimal can circularize to

without being tidally disrupted in ĀĦ–Ăĩ space (upper-left panel) and ĀĦ–ĎĦ space (upper-

right panel), together with its counterpart of an oblate spheroid (lower-left panel) and prolate

spheroid (lower-right panel). Both spheroids have semi-minor axis to semi-major axis ratio

Ĝ = 0.7. Other system properties are listed in Table 3 in the main text. The x-axes

terminate at the density of iron the hatched rectangle represents the estimated property

range of ordinary chondrites (H chondirtes, L chondrites, and LL chondirtes) (Pohl & Britt,

2020). The dashed lines correspond to the inferred periods seen in the optical transits of

WD 1145+017 (4.5 hr) and ZTF J0328-1219 (11.2 hr and 9.9 hr) (Vanderburg et al., 2015;

Vanderbosch et al., 2021).
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The approximated Roche limit is hence:

ĨRoche,oblate =



3.36125ăĉ∗

ăýĥ ( Ĝ )ĀĦ + 3Ăĩ Ĝ
2
3

4Ď2
ĦĀĦ



1
3

, (G3)

The balance for an prolate spheroid can be approximated as:

2ăĉ∗ė

Ĩ3
Roche

+ Ĉ2
Ħė = ăýĦ ( Ĝ )ĀĦė + Ăĩÿ Ĝ

2ė2

ĉĦ

, (G4)

where ĉĦ =
4
3
ÿĎ3

ĦĀĦ =
4
3
ÿ Ĝ 2ė3ĀĦ, ýĦ ( Ĝ ) is of the form:

ýĦ ( Ĝ ) =
2ÿ Ĝ 2

(1 − Ĝ 2) 3
2

ln
1 +

√
1 − Ĝ 2

1 −
√

1 − Ĝ 2
− 4ÿ Ĝ 2

1 − Ĝ 2
, (G5)

The corresponding Roche limit can be approximated as:

ĨRoche,prolate ≈



3.36125ăĉ∗

ăýĦ ( Ĝ )ĀĦ + 3Ăĩ Ĝ
4
3

4Ď2
ĦĀĦ



1
3

, (G6)

Alternatively, the Roche limit can be solved in the same way as Eq.11 in the main text.

For completeness, we also include the case where the semi-major axis of the prolate

planetesimal is the spin axis;

2ăĉ∗ Ĝ ė

Ĩ3
Roche

+ Ĉ2
Ħ Ĝ ė = ăý′

Ħ ( Ĝ )ĀĦ Ĝ ė + Ăĩÿ Ĝ ė
2

ĉĦ

, (G7)

where ý′
Ħ ( Ĝ ) = 2ÿ − 1

2
ýĦ ( Ĝ ) and hence:

ĨRoche,prolate ≈



3.36125ăĉ∗

ăý′
Ħ ( Ĝ )ĀĦ + 3Ăĩ Ĝ

− 2
3

4Ď2
ĦĀĦ



1
3

. (G8)

In Fig.G1, we plot Đmin reached at circularization. The upper-left panel is identical to

Fig.10 in the main text. In the upper-right panel of Fig.G1, we plot Đmin in ĀĦ–ĎĦ space at

Ăĩ = 100 MPa. The effect of Ăĩ decays with the increase of ĎĦ. Therefore, there may exist a

scenario where the planetesimal undergoes partial tidal disruption and size contraction until

the ultimate tensile strength is sufficient to support the body. In this case, the final size of

12



the planetesimal on the ciruclarized orbit help constrain the ultimate tensile strength of the

body.

In the lower panels of Fig.G1, we plot the analogues of the upper-left panel for an oblate

spheroid (lower-left panel) and a prolate spheroid (lower-right panel) with semi-minor axis

(short axis) to semi-major axis (long axis) ratio 0.7, and with the same density and mass

as its spherical counterpart in the upper-left panel. We further assume that the semi-minor

axis is the spin axis. When other conditions remain the same, a non-spherical planetesimal

undergoes tidal disruption at a larger distance compared to its spherical counterpart, with

the prolate planetesimal being the weakest against tidal disruption.
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