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ABSTRACT
As a new generation of large-sky spectroscopic surveys comes online, the enormous data volume poses unprecedented challenges
in classifying spectra. Modern unsupervised techniques have the power to group spectra based on their dominant features,
circumventing the complete reliance on training data suffered by supervised methods. We outline the use of dimensionality
reduction to generate a 2D map of the structure of an intermediate-resolution spectroscopic dataset. This technique efficiently
separates white dwarfs of different spectral classes in the Dark Energy Spectroscopic Instrument’s Early Data Release (DESI
EDR), identifying spectral features that had been missed even by visual classification. By focusing the method on particular
spectral regions, we identify white dwarfs with helium features at 90 per cent recall, and cataclysmic variables at 100 per cent
recall, illustrating rapid selection of low-contamination samples from spectroscopic surveys. We also demonstrate the use of
dimensionality reduction in a supervised manner, outlining a procedure to classify any white dwarf spectrum in comparison
with those in the DESI EDR. With upcoming surveys promising tens of millions of spectra, our work highlights the potential for
semi-supervised techniques as an efficient means of classification and dataset visualisation.
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1 INTRODUCTION

A suite of upcoming large-sky spectroscopic surveys promises to
enormously increase the number of sources with intermediate-
resolution spectroscopy, enabling advances across all areas of as-
tronomy. These surveys include:

• 4MOST (4-metre Multi-Object Spectroscopic Telescope; de
Jong et al. 2016): nine surveys which aim to obtain accurate radial
velocities and chemical abundances for millions of Galactic stars,
probe the history of supermassive black hole accretion through a
spectroscopic sample of about 1 million active galactic nuclei, and
obtain redshifts for 10-20 million emission line galaxies;

• DESI (Dark Energy Spectroscopic Instrument; DESI Collabo-
ration et al. 2016a,b), which plans to study the growth of structure
in the Universe through observations of baryon acoustic oscillations
and redshift-space distortions, and trace the dark matter distribu-
tion by obtaining redshifts for 30 million galaxies and quasars at
1.0 ≲ 𝑧 ≲ 3.5. When observations of these faint targets are hindered
by moonlight or poor observing conditions over Iolkam Du’ag / Kitt
Peak, the targeting switches to surveys of Milky Way stars and bright
galaxies;

• SDSS-V (Sloan Digital Sky Survey V; Kollmeier et al. 2017): an
all-sky survey from two 2.5 m telescopes (one in each hemisphere),
SDSS-V aims to record multi-epoch spectra for over six million
targets, including five million Galactic stars;

★ E-mail: xbyrne@ast.cam.ac.uk

• WEAVE (William Herschel Telescope Enhanced Area Velocity
Explorer; Dalton et al. 2012): a northern-hemisphere complement to
4MOST, WEAVE will record accurate spectroscopic velocities of
Galactic disk and halo stars, IFU H i maps of ∼ 104 low-redshift
galaxies, and wide-area views of galaxy clusters.

These surveys will all achieve first light by early 2025; SDSS-V’s
first data release (SDSS DR19; Almeida et al. 2023) and DESI’s
early data release (DESI EDR; DESI Collaboration et al. 2023) were
delivered in 2023. As these spectroscopic surveys begin returning
enormous quantities of data – and with the exabyte-scale Legacy
Survey of Space and Time (LSST; Ivezić et al. 2019) on the horizon
– automated techniques will become absolutely necessary to extract
scientific results from the vast wealth of data collected.

Entries in astronomical datasets often have high dimensionality.
They may be image cutouts of hundreds of pixels, light curves with
thousands of measurements, or spectra with thousands of fluxes. Any
structure in a dataset – such as clusters or sequences – can be in-
vestigated quantitatively by representing each entry as a vector in
a very high-dimensional space: a dataset of 𝑁 spectra with 𝐷 flux
bins can be thought of as a set of 𝑁 points in 𝐷-dimensional data
space. Visualisation of datasets in more than two or three dimensions
is challenging. However, whereas a 𝐷-dimensional data point might
ostensibly live inR𝐷 , it is very likely that every point in the dataset is
located on or near a much lower-dimensional submanifold within this
space. In a spectrum, the flux in a given bin will usually be similar to
the flux in adjacent bins. Similarly, two different sources of the same
astrophysical type (e.g. two stars of the same spectral classification)
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will have similar spectra, and will thus be nearby in the data space.
This massively reduces the effective dimensionality of the dataset,
compared to the dimensionality of the raw data points themselves.
This principle has motivated the development of several dimension-
ality reduction techniques, including Principal Component Analysis
(PCA; Pearson 1901), self-organising maps (Kohonen 1990), diffu-
sion maps (Coifman & Lafon 2006; Lafon & Lee 2006), Locally Lin-
ear Embedding (LLE; Roweis & Saul 2000), 𝑡-distributed Stochastic
Neighbour Embedding (𝑡SNE; van der Maaten & Hinton 2008), and
Uniform Manifold Approximation and Projection (UMAP; McInnes
et al. 2018). These methods calculate a two-dimensional map of the
dataset – known as an embedding – in which the distances between
pairs of nearby points in the data space are preserved as far as possi-
ble.

Dimensionality reduction techniques have found widespread use
in a variety of areas of astronomy, including the analysis of low-
resolution spectra. Boroson & Green (1992) use PCA to explore cor-
relations between the physical parameters of 87 low-redshift quasars
observed in a small spectroscopic campaign. Richards et al. (2009)
employ PCA alongside diffusion maps to predict redshifts for sev-
eral thousand low-redshift galaxy spectra observed by SDSS DR6.
Hawkins et al. (2021) use 𝑡SNE to reduce the dimensionality of a
set of low-resolution (𝑅 ≡ 𝜆/Δ𝜆 ∼ 750) optical spectra of stars in
the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX;
Gebhardt et al. 2021) to estimate a star’s effective temperature (𝑇eff),
gravitational field strength (log 𝑔), and metallicity, finding 416 metal-
poor candidate stars. Kao et al. (2024) apply UMAP to low-resolution
(𝑅 ∼ 50) Gaia DR3 XP coefficients of white dwarf (WD) spectra,
isolating a group of 465 objects of which 90 are known polluted WDs,
showing metal absorption features; the remaining 375 candidates are
subject to an ongoing high-resolution spectroscopic campaign. Di-
mensionality reduction has however not been extensively applied to
datasets of higher-resolution spectra, perhaps due to the much higher
dimensionality of spectra with many more wavelength bins.

WDs are the final state of the ≳ 97 per cent of stars with a zero-age
mass of less than 9–12 M⊙ (Lauffer et al. 2018; Althaus et al. 2010,
2021). Without internal nuclear fusion, these stellar cinders gradu-
ally cool on well-characterised timescales, making them important
tracers of the evolution and assembly of the Galaxy (e.g., Winget
et al. 1987; Tremblay et al. 2014). The spectrum of a WD usually
deviates from that of a black body due to absorbing species in its at-
mosphere. With a typical mass of ∼ 0.6 M⊙ and radius of ∼ R⊕ , the
extreme gravitational field gives WDs a strongly stratified structure.
Metals diffuse down through WD atmospheres on timescales much
shorter than their cooling age (Schatzman 1945; Paquette et al. 1986;
Koester 2009; Wyatt et al. 2014), leaving thin photospheres domi-
nated by H and/or He. Most WD spectra show absorption features
due to these light elements, and a WD is classified respectively as
DA or DB if spectral features of neutral H or He are present. Hotter
WDs may show ionised He ii features (DO). Cooler WDs cease to
excite atomic transitions below particular temperatures, (≲ 5000 K
for H; ≲ 11000 K for He) and the absorption lines gradually fade
away, giving a featureless spectrum (DC). In certain WDs, the con-
vection zone reaches deep into the interior and dredges up carbon
from the inert core, imprinting molecular C2 Swan bands in the spec-
trum (DQ; Fontaine et al. 1984; Koester et al. 1982, 2020; Blouin
et al. 2023). In other cases, instabilities in remnant planetary sys-
tems can cause planetesimals to be tidally disintegrated and accreted
by WDs, lending metal absorption features to the spectrum (Bonsor
et al. 2011; Frewen & Hansen 2014; Mustill et al. 2018; Maldonado
et al. 2020). These so-called polluted WDs provide unique insights
into the bulk composition and geology of rocky exoplanets. In the

absence of other features, such metal-line WDs are classified DZ. If,
say, both H features and metal features are both present, the WD is
instead classified as DAZ or DZA, depending on which features are
strongest. Similarly, WDs may have more auxiliary classifications,
which are listed in order of prominence in the spectrum. Thus a
DBZA shows strong neutral He features, weaker metal features, and
even weaker H features. For convenience, we will refer to WDs with
a particular primary classification as, for example ‘DA*’, to include
DA, DAB, DAZ, etc. Additionally, we use the broader classification
‘D*A’ to include WDs with primary or secondary classification, in-
clusive of DA, DAB, DZA, etc. D*A therefore encompasses any WD
whose spectrum contains visible Balmer features. Similarly, D*Z de-
scribes any polluted WD, including those with other stronger spectral
features.

Following the release of the DESI EDR (DESI Collaboration et al.
2023), the spectra of 3673 WD candidates were visually inspected
and classified by Manser et al. (2024), spectroscopically confirm-
ing 2706 WDs, of which 1400 had not been previously observed
spectroscopically. The higher resolution of DESI (𝑅 ∼ 2500–5000)
enables the identification of spectral features not visible in lower-
resolution spectra. Of the 152 polluted WDs identified, 121 were
newly discovered or previously not classified as polluted. However,
visual classification requires significant amounts of expert time, and
substantial increases in target numbers in the future (∼ 70 000 WD
candidates from the full DESI survey; Cooper et al. 2023) all but
necessitates the use of automated methods.

One class of methods for automatically classifying and analysing
WD spectra that has achieved success is supervised machine learn-
ing (e.g., Yang et al. 2020; Tan et al. 2023; García-Zamora et al.
2023; Vincent et al. 2023, 2024). However, a drawback of supervised
machine learning techniques is the reliance on the training set used
to train the model. The ‘imbalanced learning problem’ describes
the well-documented difficulties of training supervised classifiers on
datasets with large class imbalances (e.g., He & Garcia 2009; John-
son & Khoshgoftaar 2019). Such class imbalances are inevitable in
WD datasets as some spectral types are naturally rarer than others:
the DESI EDR contained 1958 DAs, but only one DO (Manser et al.
2024). Although this may be mitigated through the addition of syn-
thetic spectra to the training set, any biases regarding the generation
of the spectra or the modelling of instrumental effects would simply
be learned by the trained model. In addition to class imbalance, in-
correct labels in the training set can severely limit the accuracy of the
resulting model (e.g., Frenay & Verleysen 2014). Unsupervised pro-
cedures such as dimensionality reduction do not rely on an external
training set; they merely reveal structures present within the dataset
itself.

In this work, we apply dimensionality reduction – specifically,
𝑡SNE – to intermediate-resolution WD spectra from the DESI EDR,
outlining the method’s ability to classify WD spectra in an semi-
supervised way. Dimensionality reduction itself is unsupervised, but
the analysis of the resulting embedding uses the visual classifica-
tions of Manser et al. (2024). We emphasise that these methods
could equally be applied to sets of main-sequence stars, quasars,
galaxies, or any other set of sources targeted by the aforementioned
spectroscopic surveys. The paper proceeds as follows. In Section 2,
we describe the dataset and dimensionality reduction in more detail,
as well as important preprocessing considerations. In Section 3, we
demonstrate this method’s ability to identify clusters and sequences
in the DESI EDR WD catalogue. We also outline a way to incorpo-
rate prior knowledge about the locations of distinctive spectral lines,
and a method of using dimensionality reduction in a supervised man-
ner to classify spectra external to the catalogue. Section 4 discusses
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the application of this method as an aid in the classification of large
spectroscopic WD datasets. Section 5 summarises our work.

2 METHODS

2.1 Data

The DESI EDR contains 𝑁 = 3673 WD candidates from the cat-
alogue compiled by Gentile Fusillo et al. (2019) for which the ex-
posures include a median signal-to-noise ratio > 0.5 in at least one
of DESI’s three spectral arms (Manser et al. 2024). These publicly
available1 exposures were obtained and stacked by standard inverse
variance weighting. The spectra span 3600–9824 Å, with a wave-
length spacing of Δ𝜆 = 0.8 Å, giving 𝐷 = 7781 flux bins for each
spectrum. All spectra within DESI have an identical wavelength axis.

2.2 Dimensionality reduction

A spectrum can be represented by a high-dimensional vector, with
each component of the vector corresponding to the flux in a given
wavelength bin. Spectra produced by the DESI pipeline have 7781
bins, so they can be mapped one-to-one to 7781-dimensional vec-
tors. These vectors are not uniformly-distributed in R7781; spectra
with shared spectral features are clustered together, as their vector
components corresponding to wavelength bins near these features
will take similar values. For example, the 3703rd component cor-
responds to a wavelength of 6562.4 Å, very close to the H𝛼 line.
The (normalised) spectra of DA WDs will have lower values in their
3703rd component than spectra without any H absorption features.
DAs will hence – in this component, and by extension other com-
ponents – be close together. Additionally, in the absence of artefacts
or large noise, adjacent components of a given spectrum are likely
to have similar values. The components of spectra are thus highly
intercorrelated. Dimensionality reduction techniques exploit these
redundancies in datasets, seeking a low- (usually two-) dimensional
representation of a dataset’s structure.

A popular dimensionality reduction technique is 𝑡-distributed
Stochastic Neighbour Embedding (𝑡SNE; van der Maaten & Hin-
ton 2008). Briefly, 𝑡SNE attempts to map a set of high-dimensional
vectors x1, x2, . . . , x𝑁 ∈ R𝐷 into a set of two-dimensional embed-
ding vectors y1, y2, . . . , y𝑁 ∈ R2, in such a way as to preserve the
‘similarity’ between each pair of data points. The details of how this
is achieved are given in Appendix A (see also van der Maaten & Hin-
ton 2008). Many other dimensionality reduction techniques, such as
Uniform Manifold Approximation and Projection (UMAP; McInnes
et al. 2018) and LargeVis (Tang et al. 2016) can be shown to belong
to the same family of procedures, but with differing definitions of
similarity (see Appendix C of McInnes et al. 2018).

2.3 Data preprocessing

Before applying dimensionality reduction, it is of paramount impor-
tance to preprocess the spectra. The spectra show a range of absolute
scales: the median fluxes span three orders of magnitude. A naïve
application of dimensionality reduction to the raw data would cause
two identical WDs at different distances (and hence different bright-
nesses) to be embedded far away from each other. As we are interested
in the intrinsic properties of the WDs in this sample, rather than their

1 https://data.desi.lbl.gov/public/index.html

distance from Earth, the spectra must be normalised before dimen-
sionality reduction is applied. Additionally, some spectra show large
spikes, due to cosmic rays, detector artefacts, or imperfect sky sub-
traction (see Fig. 1). Interpreted as vectors, this corresponds to some
components of the vector being very large, and as a result the vector
would be far away in data space from where it would be without the
artefacts.

The preprocessing we apply to the data is illustrated in Fig. 1.
Artefacts usually correspond to pixels with very low signal-to-noise:
pixels with S/N < 0.2 are linearly interpolated. Fig. 1 shows that ma-
jor artefacts are removed by this step, though some sky lines and tel-
luric features remain. Overzealous removal of artefacts could remove
genuine spectral features, particularly weaker ones. We found that the
interpolation described improves the subsequent dimensionality re-
duction as compared to, say, median boxcar smoothing. Following
the removal of artefacts, the spectra are normalised to zero mean and
unit variance, to account for the fact that WDs at different distances
will show different absolute fluxes. This particular normalisation has
been used in previous work in the data-driven spectroscopic analysis
of WDs (e.g., Vincent et al. 2023), and we found this gave better
results than many other normalisation strategies.

In its simplest form, dimensionality reduction treats all compo-
nents of the vectors equally. However, some wavelengths are of more
significance than others, namely those of absorption and emission
features. To ‘focus’ the technique on particular spectral lines, we
crop the spectrum to an appropriate window before applying dimen-
sionality reduction. This additional preprocessing step is explored in
Section 3.2.

3 RESULTS

3.1 Applying tSNE to the full spectra

Dimensionality reduction was applied to the spectra of the WDs in
the DESI EDR WD catalogue, using 𝑡SNE. The dimensionality re-
duction takes an average of 5.5 s to process the entire dataset. The
resulting embedding is shown in Fig. 2(a). Each point in this embed-
ding corresponds to an individual spectrum, and several clusters and
sequences are apparent. There is a long V-shaped sequence stretching
from the left, to the bottom, to the upper right of the embedding; it
turns off into a cluster towards the centre right. A shorter secondary
sequence extends from the top of the embedding towards the centre.
Several strings and clumps are found in between and around these
two sequences.

The nature of these structures is elucidated by Fig. 2(b) and (c),
showing respectively the primary spectral class (according to Manser
et al. 2024) and effective temperature (according to H-atmosphere
model fitting of Gentile Fusillo et al. 2019). Several interesting fea-
tures include:

• The V-shaped sequence consists of largely DA* WDs;
• The secondary sequence in the upper part of the frame contains

DB*s, DZ*s, DQs, and DCs;
• The WDs in the DA sequence have been sorted approximately

according to effective temperature, with hotter WDs towards the left
of the sequence;

• DZ*s are found in various places2: (i) an island near to the
secondary sequence, (ii) towards the cool end of the DA sequence,
(iii) amongst the secondary sequence;

2 Kao et al. (2024) also find that DZs with different characteristics (primarily
𝑇eff ) are scattered by dimensionality reduction into multiple regions.
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Figure 1. Preprocessing stages, as illustrated on the cherry-picked DESI EDR spectrum of WD J170114.72+760207.16. The upper panel shows the raw
spectrum, with several artefacts. The second panel shows that the signal-to-noise ratio is very low near many of these artefacts; where it falls below 0.2, the
pixels are interpolated. The spectra are then rescaled to zero mean and unit variance, as shown in the lower panel. Major artefacts have been removed, though
certain imperfect sky subtraction and telluric features remain, particularly above 7500 Å.

• Extragalactic sources (‘×’ markers) are mostly located in strings
and small clumps around the secondary sequence;

• Subdwarfs (‘+’ markers) are largely found towards the hot end
of the DA sequence;

• The majority of main-sequence stars (black star icons) are found
towards the centre right, though their cluster merges somewhat with
the cool end of the DA sequence (cf. fig. 1 of Eisenstein et al. 2006).
A few are also scattered elsewhere.

Although the spectral classes are known here, owing to the visual
inspection campaign of Manser et al. (2024), dimensionality reduc-
tion would nonetheless provide a valuable analysis if the classes were
a priori unknown, as will be the case with upcoming spectroscopic
surveys. For example, it is well-known that approximately 80 per cent
of WDs are DAs. As such, when applying dimensionality reduction
to a WD dataset, one would implicitly identify the largest cluster as
corresponding to mostly DAs.

That dimensionality reduction is capable of separating different
classes of WD into groups in this way is ultimately due to similarities
between spectra of the same spectral class, and differences between
different classes. Expressed as vectors, DA spectra (say) are much
closer to vectors of other DA spectra of similar effective temperature,
than to DB spectra. Note that this would not be true if the spectra
had not been preprocessed (see Section 2.3): closer WDs would have
brighter spectra than more distant WDs of the same spectral type, and
hence spectral vectors with larger magnitudes. The spectral vectors
would therefore be very far away from each other, and hence also
embedded far apart, despite being similar astrophysical objects. The
same would be true of spectra with very large artefacts. Preprocessing
is thus crucial in removing any irrelevant aspects of the data.

The H-atmosphere model fitting of Gentile Fusillo et al. (2019)
suggests that the V-shaped sequence transitions smoothly from
𝑇eff ≳ 80000 K through to 𝑇eff ≲ 4000 K. We see that the varia-
tion in the tilt of the spectral black-body continuum – as well as

perhaps second-order features such as the strength of the Balmer
lines – has been converted by dimensionality reduction to variation
along this sequence. The hottest WD in this sequence has a very
similar spectrum to the second-hottest, so the two are embedded
close together; the second-hottest has a similar spectrum to the third-
hottest; etc. Anomalies of intermediate temperature at opposite ends
of the sequence (see Fig. 2(c)) are largely main-sequence stars and
other objects that have been erroneously assigned an ill-fitting WD
temperature. The fact that 𝑇eff “spans” the embedding identifies this
parameter as that which describes a spectrum to first order: the pa-
rameter which primarily determines the spectrum is the temperature.
The effects of 𝑇eff in the dimensionality reduction are discussed in
more detail in Section 4.3.

The transitions undergone by WDs as they gradually cool are
also borne out in the embedding (Fig. 2(b)), though some subtleties
emerge as a consequence of the classification system itself. As the
temperature of a DA falls below around 𝑇eff ≈ 5000 K, hydrogen
transitions are no longer excited, the Balmer lines fade away, and the
DA becomes a DC. However, the transition is continuous: Balmer
lines do not suddenly disappear below some sharp temperature cut-
off. As such, the distinction between DA and DC is a fuzzy one,
and whether a cool hydrogen-atmosphere WD spectrum is classified
as DA or DC ultimately depends on whether a human classifier can
subjectively identify H features against noise. This task is not trivial,
but we argue that it is ultimately arbitrary: there is negligible phys-
ical difference between a DA with very weak Balmer lines, and a
hydrogen-atmosphere DC. Unable to distinguish between these two
arbitrarily similar classes, dimensionality reduction thus blends the
low-temperature DAs with the DCs, in a sense including the strength
of spectral features in the classification, rather than the binary pres-
ence or absence of features.

A DC WD, as labelled by visual classification campaigns, is not
necessarily one with a pure black-body spectrum; it is merely one

MNRAS 000, 1–15 (2024)
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Figure 2. (a) 𝑡SNE embedding of DESI EDR WD candidate spectra. The embedding aims to reflect the pairwise distances between the high-dimensional
spectra in a two-dimensional space; as such the axes are arbitrary. (b) The embedding is colour-coded according to the visual spectral classification of Manser
et al. (2024). For WDs, the colour corresponds to primary spectral type: DA*s (inc. DAZs, etc.) in red; DB*s in blue, and so on. Other sources not corresponding
to individual WDs have different symbols (see key). The main feature of the embedding is the sequence of DA*s (red), though several other clusters are clear
(see text). (c) The embedding is colour-coded by effective temperature, according to the hydrogen-atmosphere WD model which best fits the sources’ Gaia
photometry (Gentile Fusillo et al. 2019). The DA sequence extends from hotter WDs on the left (among which lies the singular DO), around to cooler WDs at
the top right. Note that objects with a low probability of being a WD (𝑃WD < 0.75; see Gentile Fusillo et al. 2015) are not assigned a temperature (Gentile
Fusillo et al. 2019).
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where any spectral features are at a level smaller than the noise. It is
therefore likely that higher-signal-to-noise spectra would reclassify
some of the putative DCs in the DESI EDR WD catalogues. Con-
versely, it is possible that noise features at the location of a spectral
feature in the spectrum of a genuine DC might fool a human classifier
into labelling it otherwise. Rather than exhibiting a weakness of the
technique, we argue that a cool DA is objectively more similar to a
H-atmosphere DC, than it is to a much hotter DA with strong Balmer
features. It is therefore more natural that cool DAs should be pro-
jected near to DCs. Dimensionality reduction faithfully reflects this
subtlety by projecting the cool DAs with weak absorption features
nearby to DCs with no visible features. Similarly, the hot end of the
DA sequence is somewhat blended with other classes of very hot
objects, most commonly subdwarfs. Nonetheless, the central stretch
of the DA sequence shows that dimensionality reduction very pre-
cisely identifies WD Balmer lines, with between 92 and 98 per cent
of this midsection classed as D*As or WD-main-sequence binaries
by Manser et al. (2024) (depending on how liberally one defines
the midsection). This technique therefore identifies WDs with clear
Balmer features at high precision, and edge cases are faithfully pre-
sented as such. While not necessarily assigning a strict classification
to these transitional WDs, such a classification is physically not very
significant anyway.

Similar trends are borne out in the secondary sequence, which
shows DB*s at the top of the embedding transitioning into a mix-
ture of DCs and DQs. The transition from DB to DC has a very
similar physical origin to the DA-to-DC transition discussed in the
previous paragraph, but at higher temperature, as seen in Fig. 2(c).
The DC transition temperatures are in line with theoretical predic-
tions of approximately 5000 K and 11000 K for H- and He-dominated
atmospheres respectively. Aside from forming a DC, a cooling He-
atmosphere WD may begin dredging carbon from the core, giving
rise to a DQ. As this cooling occurs, He transitions fail to be excited
and the He lines of a DB fade away. As with Balmer lines, He lines
and Swan bands can be arbitrarily weak, blurring the boundaries
between cool DBs, DQs, and DCs. That these three spectral types
are all projected together in the secondary sequence at the top of the
embedding reflects the smooth transition between them, as with the
H-atmosphere WDs discussed above. Indeed, Fig. 2(c) shows that
the DCs in this part of the embedding have temperatures3 well in
excess of the DA-to-DC transition temperature of ≈ 5000 K. These
DCs therefore must have He-dominated atmospheres: if they were
H-dominated then Balmer features would be visible at these tempera-
tures. These observations therefore suggest that the two main features
of the embedding correspond respectively to H- and He-dominated
atmospheres.

Briefly, we discuss the presence of a small number of DA*s at the
cool end of the He-atmosphere sequence (see Fig. 2(b), just above
centre), of which there are 43. Of these, 24 are classified by Manser
et al. (2024) as DAH, DAe, DAP, or some combination of these
secondary classifications. These may have been found in the He-
atmosphere sequence as the broad Swan bands of a DQ are mimicked
by the Zeeman-split Balmer features of a DAH, or broad emission
features of a DAe, or other unidentified features in DAPs. The re-
maining 19 are either pure DAs, DABs, DAZs, or some combination
of these classes. These objects are invariably warm (𝑇eff ≳ 7000 K)
and have weak Balmer lines, making them appear similar to DCs
of similar temperatures. It is thus understandable that these spectra

3 Although the temperatures shown in Fig. 2(c) are based on H-atmosphere
models, the He-atmosphere model temperatures are very similar.

of primary classification DA are projected near to these warm (thus
He-atmosphere) DCs. They may be He-dominated WDs between the
threshold temperatures for H and He absorption excitation (5000–
11000 K), such that Balmer features dominate over He lines even
though the H abundance is lower than He.

It is somewhat surprising that there is a small gap between the two
sequences. Based on the observations outlined above, this region
should be populated with DCs of ≈ 7000 K, but in fact there are
very similar DCs of around this temperature on either side. It is
possible that the gap between this region and the secondary sequence
containing the rest of the He-atmosphere WDs is simply due to poor
sampling around this temperature. Indeed, Manser et al. (2024) also
find a gap in the distribution of BP−RP colours of DCs in the DESI
EDR (see Section 4.4). With the larger number of objects that will
be provided by the full releases of upcoming spectroscopic surveys,
this gap may be filled in.

The automated nature of dimensionality reduction can protect
against human error in the visual classification of WD spectra.
Fig. 3 shows a zoom-in to the top of the embedding around an
island populated mostly by DZ*s. According to the visual classi-
fications of Manser et al. (2024), this island also contains a DBZ
(J133305.34+325400.11) and a DC (J160711.86+532157.65). These
objects appear to have been grouped together owing to the presence
of Ca H and K lines in all the spectra, including the putative DC.
The presence of Ca absorption lines in the DC’s spectrum suggests
that this is in fact a DZ; indeed Kleinman et al. (2013) classify this
source as a DZ based on its SDSS DR7 spectrum. The bottom panel
of Figure 3 shows the absorption lines to be quite weak, and would
probably not have been noticeable without zooming in. While large
visual classification campaigns are reliable, this example illustrates
that errors are nonetheless possible, and that such errors can be easily
identified with automated methods such as dimensionality reduction.
This particular case also illustrates the ability of dimensionality re-
duction to quickly create a high-recall sample of polluted WDs (in
this case 100 per cent recall) from a spectroscopic dataset.

Finally, we note that there is no clear trend in the radial velocity of
the WDs in the sample. There is a very narrow range of redshifts in
the sample: around 97% of the DAs have a redshift within 0.005 of the
mean. The small radial velocities involved, along with the breadth of
the Balmer features, lead to only small differences between spectral
vectors. Interestingly, trends in redshift are apparent among quasars
in the sample. Along each ‘string’ of extragalactic sources shown in
the embedding, the wavelength of the Ly 𝛼 line gradually shifts.

3.2 Classification using specific spectral regions

As mentioned in Section 2.3, dimensionality reduction treats all com-
ponents of a vector – i.e. all wavelengths – equally. However, wave-
length ranges that include spectral features are of particular interest.
In this subsection we explore the use of cropping the spectrum, to a
window around some particular spectral line, to see if dimensional-
ity reduction can better separate individual spectral classes from the
rest.

3.2.1 Helium features

We first crop the spectra to the range 5500–6100 Å, a window which
includes a He line at 5876 Å. The dimensionality of the spectra
cropped to this wavelength range is 𝐷 = 750, much lower than
𝐷 = 7781 for the full spectra. The result of applying dimensionality
reduction to this cropped dataset is shown in Fig. 4.
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Figure 3. Zoomed-in view of the upper centre of the embedding shown in
Fig. 2; spectra of four WDs. Except for two objects classified by Manser
et al. (2024) as DBZ and DC, all the objects on this island have primary
classification DZ. Two of these DZs (highlighted) have their spectra shown
in the second panel, along with the DBZ spectrum. All three spectra show
strong absorptions due to Ca ii (dashed vertical lines). The final panel shows
the putative DC, which also shows absorption features here.

The technique separates an island of around 200 objects, con-
taining the vast majority (≈ 180/200 = 90 per cent) of WDs with
He lines (D*B). The second panel of Fig. 4 demonstrates that these
WDs are isolated primarily due to their shared 5876 Å absorption.
This shared feature causes the spectral vectors to be close together
in data space when the dimensionality is confined to this subset of
dimensions; this proximity is preserved by dimensionality reduction
in two dimensions.

The third panel of Fig. 4 shows three examples of objects that
are projected onto this island despite not being classed as D*Bs by
Manser et al. (2024). For some of these spectra there is perhaps a
very shallow or broad absorption feature, but it is difficult to tell by
eye. These spectra also appear to be relatively noisy, so these spectra
may have been projected nearby due to coincidentally-similar noise.
The distinction between a genuine weak spectral feature and noise
would be difficult for dimensionality reduction to ascertain, as it does
not account for variations in flux between different spectral bins of
the same spectrum, but rather differences in flux in the same bin
between different spectra.

The bottom panel of Fig. 4 shows examples of false negatives:
D*Bs which are not on the island. The first two have very weak
He absorption lines, and have been identified as DBs tentatively or

D*B
Other

DB

DZAB

DABZ

Example D*B spectra

Fl
ux
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ar

y] EXGAL
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DC

False positives
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DB:
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Figure 4. Top panel: dimensionality-reduced embedding of DESI EDR
spectra cropped between 5500–6100 Å. An island is isolated containing about
180 objects classified as D*Bs by Manser et al. (2024); some D*Bs are not on
the island. Second panel: three spectra on the island are shown, each featuring
a He absorption at 5876 Å (dashed line). Third panel: three objects on the
island which are however not visually classified as D*Bs. Shallow absorptions
are just about visible. Bottom panel: three D*Bs not located on the island.
The first two spectra show very weak He features; the third spectrum shows
a large artefact.

through spectral features in other parts of the spectrum. The third
object has a large noise feature at 5577 Å, likely a [O i] line escaping
imperfect sky subtraction4. This noise feature also escaped removal
by the preprocessing step, and has led its spectral vector to be far
enough away from the other D*Bs that is has not been grouped with
them.

4 This line is also seen in the false positive DC.
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3.2.2 Balmer lines and cataclysmic variables

Cataclysmic variables (CVs) are binary systems in which a donor
star overfills its Roche lobe and transfers matter onto a WD. The
characteristic spectral features of a CV are strong emission lines from
the transferred material, which depending on the orientation of the
system and the WD’s magnetic field strength may be double-peaked
(Smak 1969; Huang 1972).

As these unique features are most commonly seen in the Balmer
series, we isolate CVs from the DESI EDR by cropping the spectra to
three windows around H𝛼, H 𝛽 and H 𝛾: the wavelength ranges se-
lected are 6500–6600 Å; 4800–4900 Å, and 4300–4400 Å. For each
spectrum, a vector is created by cropping to each of these ranges, and
concatenating the three ‘sub-vectors’. Cropping the spectral vectors in
this way gives 𝐷 = 375-dimensional vectors. Following preprocess-
ing and dimensionality reduction as above, the resulting embedding
is shown in Fig. 5. All 12 of the CVs identified by Manser et al.
(2024) are located on a small island at the top right of the embed-
ding, no doubt as a result of their shared emission features, most
of which are double-peaked. By zooming in to characteristic wave-
length ranges, dimensionality reduction is therefore able to identify
CVs from this sample with 100 per cent efficiency, according to
human classification.

3.3 Classifying new white dwarf spectra against DESI EDR

This work aims to provide a tool to help in the classification of immi-
nent large spectroscopic WD datasets, rather than the classification
of individual objects. However, the latter can also be achieved, by us-
ing dimensionality reduction in a supervised way. Here we present a
means to estimate the classification of an additional spectrum against
the 𝑁 WDs in the DESI EDR, by applying dimensionality reduction
to a dataset of 𝑁 + 1 spectra: the DESI EDR WDs, plus the spectrum
one wishes to classify. This is achieved as follows, and as schematized
in Fig. 6.

(i) Interpolate the external spectrum to the wavelength grid of
the DESI spectra, and append it, giving a dataset of 𝑁 + 1 spectra:
x1, x2, . . . , x𝑁 , x∗ ∈ R7781.

(ii) Apply dimensionality reduction, giving 𝑁+1 two-dimensional
points: y1, . . . , y𝑁 , y∗ ∈ R2. Since 𝑁 ≫ 1, the resulting embedding
will not be noticeably different from the original embedding produced
from the original set of 𝑁 spectra shown in Fig 2, though with an
extra point y∗.

(iii) Identify the location of the external spectrum y∗ in the new
embedding. The spectrum will be projected near to similar spectra, so
its spectrum x∗ should be classified the same as the spectra projected
near to it.

To demonstrate this application, a spectrum from the SDSS WD
catalogue compiled by Gentile Fusillo et al. (2019) was selected at
random from each of the following spectral classes: DA, DB, DZ,
DC, DQ, DAO. Each was interpolated to the same wavelength grid
and then (individually) appended to the DESI EDR dataset described
above. 𝑡SNE was then applied to these six sets of 𝑁 + 1 spectra; the
dimensionality reduction still only takes a few seconds. The results
of this procedure are shown in Fig. 7.

The SDSS DA is projected within the main DA sequence. As such,
if one did not a priori know the classification of this spectrum, one
could apply the above procedure, note that this spectrum is projected
among other DAs, and be confident that this spectrum is also of a DA,
having been identified by dimensionality reduction as a very similar
spectrum. Similarly, the SDSS DB and DZ are also projected into
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Figure 5. Top panel: dimensionality-reduced embedding of DESI spectra
cropped to three regions around H 𝛼, H 𝛽, and H 𝛾. An isolated island to the
top right shows all 12 CVs in the sample, identified as similar to each other by
shared emission features in these regions. Lower panel: spectra of the CVs.
The ranges over which the spectra were cropped before dimensionality reduc-
tion is highlighted, and surrounds the strong, often double-peaked emission
features.

regions of the embedding with WDs with the correct classification.
The DCs, DQs and DAOs are also projected amongst other WDs in
their respective classes, though these classes are not found in isolated
islands even in the original embedding (Fig. 2). For example, the DC
is projected near to one end of the He-atmosphere sequence, which is
occupied by not only DCs but also DQs, DZs, and even extragalactic
sources. Classifying them in the manner suggested would therefore be
challenging. Additional data would be necessary to distinguish it as
a DC, including perhaps visual inspection. However, this ambiguity
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Figure 6. Procedure for classifying external WD spectra against DESI EDR (see text). One would estimate the classification of this spectrum (black) as a DA.

is not necessarily a drawback. As we outline in Section 3.1, the
WD classification system does not separate WDs into wholly distinct
classes: for example, a very cool DA is physically almost identical to
a DC. If an external WD spectrum is projected by the above method
near the boundary between the cool DAs and the DCs, then this
would inform the classifier that the spectrum is of a H-atmosphere
WD around 5000 K. Whether it should be classified as a DA or a DC
has little physical meaning.

One could presumably apply this technique using the trick of
cropping the spectra (Section 3.2), to investigate the similarity of a
particular spectral range to those of the DESI EDR; this is beyond
the scope of this work.

4 DISCUSSION

4.1 An aid for spectral classification

Approximately 70 000 WDs are targeted in the Milky Way Survey
as part of the full DESI data release, expected in 2025 (Cooper et al.
2023). Whereas the entire DESI EDR WD catalogue has been clas-
sified thanks to an extensive visual classification campaign (Manser
et al. 2024), the full data release will contain a factor of 20 more
WD candidate spectra. We argue that automated methods such as
dimensionality reduction would significantly reduce the expert time
required to classify large spectroscopic surveys such as the DESI
data release.

Under the assumption that the DESI EDR WD catalogue is repre-
sentative of the WD population, applying dimensionality reduction
to any large WD spectroscopic survey with a similar selection func-
tion would give maps analogous to those presented here. Such maps
would feature a large swathe of H-atmosphere DA*s and DCs or-
ganised by temperature, a second sequence of He-atmosphere DB*s,
DQs, and DCs, and various islands of DZ*s, MS stars, and extra-
galactic sources. Dimensionality reduction thus provides a powerful
and rapid initial classification, broadly separating WDs with Balmer
lines from those with He lines. If a sufficiently diverse subset of the
dataset is labelled – as will be the case with the full DESI data release,
given that the EDR has been classified – then further classification
can be done in a semi-supervised way. Zooming in on particular
lines, more precise classifications can be made with high recall. Lo-
cating spectra on a map offers an intuitive – and crucially, automated
– assessment of the likely classification of a spectrum. This could
be used in conjunction with other, non-spectral information, such as
the source’s Gaia magnitudes, or the source’s ‘probability of being a

white dwarf’ (𝑃WD; Gentile Fusillo et al. 2015), when determining
spectral class.

Dimensionality reduction offers several advantages over visual in-
spection, making it a useful complementary method. Firstly, it is
enormously quicker. Secondly, as a result, it is far more readily re-
peatable and verifiable. Thirdly, it is objective, as it deals with the
data directly; visual inspection relies on the qualitative human in-
terpretation of an image, which is less reproducible and permits no
quantitative judgement of how much stronger a feature is than the
noise. Related to this point is the fact that dimensionality reduction
effectively ‘sorts’ the spectra by the strength of spectral features,
as exhibited by the smooth transition from cool DAs to DCs (Sec-
tion 3.1).

4.2 Rare classes and the benefits of semi-supervised methods

For some classes with little representation in the EDR, the full re-
lease may contain enough similar objects for them to form their own
cluster. For example, the EDR contains a single WD classified DO
(J171600.53+422131.17; Manser et al. 2024), along with 10 DAOs,
near the hot (left-hand) end of the DA sequence of Fig. 2. With more
DOs and DAOs in the full data release, it is reasonable to expect that
dimensionality reduction would be able to separate them out from
the DA sequence based on their common He ii lines.

Such poorly-represented classes also highlight advantages of semi-
supervised techniques over, for example, fully supervised machine
learning. The accuracy of supervised models is entirely dependent
on their training data, and strongly imbalanced training sets make
recognising underrepresented classes more difficult (e.g., He & Gar-
cia 2009; Johnson & Khoshgoftaar 2019; Das et al. 2022). As an
extreme example, if one class constitutes 99 per cent of the training
set, then a trivial model which predicts the dominant class for every
data point would have a precision of 99 per cent. Supervised ma-
chine learning techniques are thus less successful at identifying rarer
classes. With dimensionality reduction a substantially unique spec-
trum would be embedded far away from the more common classes.
Additionally, although multiclass classifiers allow for uncertainty in
their predictions – by outputting a set of numbers summing to one,
often interpreted as a discrete probability distribution over the pos-
sible classes – supervised classifiers often erroneously make very
high-confidence predictions, especially for data not well-represented
in the training set (e.g., Nguyen et al. 2015; Guo et al. 2017; Hein
et al. 2019). The semi-supervised technique presented in this work
automatically accounts for such uncertain classifications, albeit qual-
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Figure 7. Projection of external SDSS spectra appended to DESI EDR WD dataset. Each embedding is almost identical to the embedding of 𝑁 spectra shown
in Fig. 2, but includes one additional point, corresponding to the external spectrum. The projection of the external spectrum is highlighted in each case, using
the same colour scheme as Fig. 2. The DA, DB, and DZ are projected near to other objects classified as such, so these objects could reliably have been classified
using dimensionality reduction as well as visual inspection. The DC, DQ, and DAO are also projected near to objects with the same class, but these regions of
the embedding are more ambiguous. The external spectrum appended is shown in each case, together with its SDSS name and spectral classification (according
to Gentile Fusillo et al. 2019).

itatively: spectra with minuscule Balmer features would be located in
the overlap between DA and DC regions of the embedding, naturally
informing a human classifier of some uncertainty in the classifica-
tion. As discussed in Section 3.1, this uncertainty is somewhat moot,
and is as much a classification of the noise level in the spectrum as of
the WD itself. If a human classifier desired to distinguish between the
two cases, they would devote more effort to identifying distinguish-
ing features in the spectrum. However, unambiguous spectra located
solidly in the DA region would merely require a confirmatory glance
at most.

4.3 The role of effective temperature

Fig. 2(c) shows a trend in effective temperature from one end of the
DA sequence to the other. One might wonder whether preprocessing

the spectra to remove temperature information would allow for more
subtle trends to be exhibited in the embeddings.

It is difficult to remove all temperature information from a spec-
trum, such that all WD spectra of the same classification would ap-
pear the same. Although the black-body continuum can be removed
by fitting and subtraction, the shapes of WD absorption features are
highly temperature-dependent (e.g., Liebert et al. 2005; Tremblay
& Bergeron 2009). Additionally, the relative strengths of different
spectral lines of the same species is temperature-dependent. As such
dimensionality reduction is still able to identify temperature trends
in continuum-subtracted spectra.

This is illustrated in Fig. 8, which shows the embedding of the spec-
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tra after continuum subtraction5, preprocessing as above, and dimen-
sionality reduction. The DA sequence, which in Fig. 2(b) spanned
the entire embedding, has collapsed somewhat. This is indicative that
the temperature information is no longer as prominent in the spectra
after continuum subtraction, with other effects becoming important.
However, it is clear from Fig. 8(b) that temperature information has
not been completely removed, as there is still a trend from cool DA*s
at the lower left to hot DA*s at the upper left. This no doubt reflects
the well-characterised differences in Balmer features between WDs
of different temperatures.

We note in passing several other interesting features of this em-
bedding that differ from the original embedding of non-continuum-
subtracted spectra (Fig. 2).

• DB*s are quite well-separated in the upper right of the embed-
ding, more so than in the original embedding.

• Similarly, there is better separation of the MS stars, which form
a cluster at the lower centre of the embedding.

• DZ*s are also much more well-clustered, with almost all being
located in a cluster just below centre.

• All but one of the CVs is found in a small island just below the
DB*s, even though the spectra have not been cropped (Section 3.2.2).

4.4 Comparison with colour-colour diagrams

Colour cuts have often been used to select WDs from large photo-
metric datasets such as SDSS (Eisenstein et al. 2006; Gentile Fusillo
et al. 2015), as well as to look for WDs with particular features such
as metal pollution (Hollands et al. 2015). These colour cuts are car-
ried out by plotting each source in (𝑢−𝑔)-(𝑔−𝑟) space and selecting
some particular region. In a sense, these colour-colour plots consti-
tute a very rudimentary form of dimensionality reduction, as they
deproject spectral information into a two-dimensional map. Several
similarities between these plots and the embeddings shown in this
work are outlined here.

• The embedding in Fig. 2 is reminiscent of the (𝑢 − 𝑔)-(𝑔 − 𝑟)
colour-colour plot of WDs from the catalogue of Gentile Fusillo et al.
(2019), shown in fig. 1 of Manser et al. (2020). The plot similarly
shows a V-shaped sequence of DAs, with a secondary sequence of
DBs, though they are considerably less well-separated. This may not
be entirely a coincidence. As discussed above, the effect of 𝑇eff is to
gradually ‘tilt’ the spectrum, which would both continuously change
the photometry, and also continuously transport the spectrum in the
data space.

• Cool DBs, DCs, and DQs are all found in a similar location in the
embedding of Fig. 2, as in (𝑢−𝑔)-(𝑔−𝑟) space (Manser et al. 2020).
It is likely that the breadth and weakness of the spectral features of
many instances of these classes has led them to be identified as similar
spectra by dimensionality reduction. Their proximity in colour space
is due to their shared lack of strong Balmer features.

• In addition to being on a fairly isolated island in the embedding,
cool DZs are also separated in colour space, due to strong Ca ii
absorption features in the SDSS u band (Hollands et al. 2015).

• As discussed in Section 3.1, there is a small gap in the embed-
dings of DCs which fails to link the H- and He-atmosphere sequences.
There is a similar gap in the distribution of Gaia colours of DCs in
the DESI EDR around BP − RP = 0.75 (see fig. 4 of Manser et al.

5 Continuum subtraction was carried out using the specutils package, which
by default fits a Chebyshev polynomial of degree 3.

2024), suggesting poor sampling in a particular temperature region
for DCs.

We argue that dimensionality reduction offers a significant im-
provement in the identification of spectral classes compared to simple
colour-colour plots. The separation between H- and He-dominated
atmospheres is much more distinct, as the Balmer series seemingly
has a larger effect on a spectrum’s position in data space than on its
photometry. Further, while strong metal pollution can have a signifi-
cant effect on photometry (Hollands et al. 2015), weaker absorption
lines would not, yet dimensionality reduction readily identifies them.
This is evident in the fact that J160711.86+532157.6 is projected
onto an island with other D*Zs, despite the Ca ii lines being so weak
that they were missed even by visual inspection (see Fig. 3). The
increased power over colour-colour diagrams is ultimately due to
the fact that while the presence of a narrow absorption line might
have only a minimal impact on an object’s photometry, it can move a
spectral vector a significant distance in data space, allowing the line
to be recognised by dimensionality reduction but not colour-colour
plots.

4.5 Limitations

It is clear that dimensionality reduction alone is not capable of neatly
classifying the spectra of all WD candidates. Though the technique
is quickly able to inform the classification of a large fraction of the
dataset, particularly when focused on a wavelength range around
some distinctive spectral features, drawbacks to the technique are
outlined in this subsection.

As outlined in Section 4.2, dimensionality reduction does not sim-
ply take a spectrum as input and produce a set of pseudo-probabilities
of various classes, as with supervised multiclass classifiers. While
such a classification could be biased and may not reflect the nuances
of WD spectral classification, the outputs are readily interpretable
and require no further human intervention. Locating a spectrum on
a map relative to others may require some human judgement, which,
while less time-consuming than examining the overall spectrum, is
less trivial than simply receiving a set of probabilities and taking the
class with the highest probability.

There are multiple regions of the embedding shown in Fig. 2 where
spectra of different classes are embedded close together. The cooler
end of the He-atmosphere sequence contains several different classes,
mostly DCs, DQs, but also a few DB*s, DA*s, DZ*s, and extragalac-
tic sources. The spectra in this region show particularly shallow and
broad features, such as the broad C2 Swan bands of the DQs. This
is likely due to the way dimensionality reduction handles noise. As
the different wavelength bins are each treated as vector components,
there is no sense of ‘ordering’: the technique is not aware of which
wavelength bins are adjacent. Dimensionality reduction does not
compare different components of the same spectrum; rather it can
only compare the values of a component between different spectra.
As such the method cannot account in for noise in the spectrum, and
has difficulty in differentiating weak, broad spectral features because
numerically the corresponding spectral vectors will not be very dis-
tant. Conversely, very narrow spectral features, such as certain MS
star absorption features, may also be difficult to distinguish, as the
discrepancy may only be in a few wavelength bins. If two spectra
have very similar black-body continua, but one spectrum contains
sharp features, the spectral vectors will likely be nearby. This may
explain the merging of the cool end of the H-atmosphere sequence
with the MS stars towards the right of the embedding. Dimensional-
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Figure 8. Dimensionality-reduced embedding of spectra following continuum subtraction. (a) Colour-coded according to the visual classification of Manser
et al. (2024), as in Fig. 2(b). The DA sequence has partially collapsed, but not entirely. (b) Colour-coded by 𝑇eff , as in Fig. 2(c). There is still a temperature trend
along the shorter DA sequence.

ity reduction is therefore best able to distinguish WD spectral classes
where lines are neither very weak nor very narrow.

4.6 Choices of spectral region

Section 3.2.1 showed that cropping the spectra to a region around
a spectral line can improve dimensionality reduction’s ability to de-
termine whether WDs belong to particular classes. It was found (by
trial and improvement) that the ideal wavelength range should include
both the spectral feature and a considerable amount of continuum, to
give something for the spectral feature to ‘stand out against’ follow-
ing normalisation. For example, the He feature at 5876 Å rarely has
wings broader than ±50 Å. However, cropping the spectra to just this
region led to the WDs with He lines being less distinctly separated
from the rest of the spectra.

4.7 Computation time

Computation time has not been a significant issue in the dimension-
ality reduction of the DESI EDR WD catalogue (5.5 s for 𝑁 = 3673).
With the implementation of tSNE used here, the complexity is
O(𝑁 log 𝑁) (Barnes & Hut 1986; van der Maaten 2014), suggest-
ing that for 𝑁 ≈ 70 000 in the full data release the computation
time would rise to 140 s. The weak scaling makes dimensionality
reduction a suitable tool for much larger spectroscopic datasets.

5 CONCLUSIONS

We outline the use of dimensionality reduction as an aid in the
classification of large-sky spectroscopic surveys. Providing a proof-
of-concept through the application of 𝑡SNE to the DESI EDR WD
catalogue, we demonstrate the method’s ability to map out the struc-
ture of an intermediate-resolution spectroscopic survey, identifying
spectra of various classes, in a way which naturally indicates uncer-
tainty between classes. By focusing on spectral windows containing
particular features, sources with spectral features in these windows
can be identified with high recall: CVs and WDs with helium lines
can be identified with respectively 100 per cent and 90 per cent re-
call, as judged against human classification. The technique identifies
spectral features that have been missed even by visual classification,
and takes only a few seconds to indicate spectral classifications for
the entire catalogue. Additionally, we present a means to use dimen-
sionality reduction in a supervised manner to classify WD spectra by
comparison with those in the DESI EDR.

The procedures outlined here could assist in the classification of
the several upcoming large-sky spectroscopic surveys targeting WDs,
enabling a quicker path to various astrophysical studies that depend
on these classification. These include: the evolution and internal
structure of WDs; the behaviour and physical processes characteris-
ing CVs; the fraction of WDs showing pollution; the composition of
exoplanetary material. Such classification campaigns would proceed
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by applying dimensionality reduction to the spectroscopic dataset,
labelling any whose spectral class is already known, and using this
as an accurate prior for other spectra clustered nearby. These methods
would be equally applicable to the classification of other subsets of
large spectroscopic surveys, such as main-sequence stars, quasars, or
galaxies. As the coverage, depth, and resolution of these surveys im-
prove over the next few years, our work highlights the necessity and
ease with which automated techniques can be exploited to maximise
the scientific returns from these enormous datasets.
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APPENDIX A: MATHEMATICAL DETAILS OF TSNE

The goal of dimensionality reduction is to map a set of 𝑁 high-
dimensional vectors x1, x2, . . . , x𝑁 into two-dimensional vectors
y1, y2, . . . , y𝑁 , in such a way that the ‘similarity’ between each
pair of vectors is approximately preserved under the map. Differ-
ent dimensionality reduction methods use different definitions of
similarity (McInnes et al. 2018); for 𝑡SNE, similarity between high-
dimensional vectors x𝑖 and x 𝑗 is defined by:

𝑝𝑖 𝑗 =
1

2𝑁

(
𝑝𝑖 | 𝑗 + 𝑝 𝑗 |𝑖

)
, (A1)

where 𝑝𝑖 | 𝑗 is defined by a normal distribution:

𝑝𝑖 | 𝑗 =
exp

(
−
x𝑖 − x 𝑗

2/2𝜎2
)

∑𝑁
𝑘≠𝑖

exp
(
−
x𝑘 − x 𝑗

2/2𝜎2
) , (A2)

where ∥·∥2 is the L2 norm and 𝜎 is a hyperparameter known as the
perplexity. In this work, the perplexity is set to 𝜎 = 30, the default
value in the scikit-learn implementation used (Pedregosa et al.
2011).

Similarity between low-dimensional points y𝑖 and y 𝑗 is defined by
a student’s 𝑡-distribution with one degree of freedom:

𝑞𝑖 𝑗 =

(
1 +

y𝑖 − y 𝑗

2
)−1

∑𝑁
𝑘≠𝑖

(
1 +

y𝑘 − y 𝑗

2
)−1 . (A3)

To faithfully maintain the structure of the dataset as far as possible
when reducing the dimensionality, the difference between the pair-
wise similarity distributions is minimised. The difference between
the distributions is quantified by the Kullback-Leibler divergence
(Kullback & Leibler 1951):

KL(𝑝 | |𝑞) ≡
∑︁
𝑖, 𝑗

𝑝𝑖 𝑗 log
(
𝑝𝑖 𝑗

𝑞𝑖 𝑗

)
, (A4)

and is minimised by optimising the positions y𝑖 of the low-
dimensional points, for example by gradient descent. The result is
a set of two-dimensional vectors y1, y2, . . . y𝑁 which are separated
from each other by similar distances as x1, x2, . . . x𝑁 are from each
other.
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The scikit-learn implementation of 𝑡SNE used here (Pedregosa
et al. 2011) makes use of the Barnes-Hut algorithm (Barnes & Hut
1986), speeding up the calculation of the embedding from O(𝑁2)
to O(𝑁 log 𝑁) at the expense of a very small reduction in accuracy
(van der Maaten 2014).
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