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ABSTRACT
The scattering of small bodies by planets is an important dynamical process in planetary
systems. In this paper, we present an analytical model to describe this process using the
simplifying assumption that each particle’s dynamics are dominated by a single planet at a
time. As such the scattering process can be considered as a series of three-body problems
during each of which the Tisserand parameter with respect to the relevant planet is conserved.
This constrains the orbital parameter space into which a particle can be scattered. Such
arguments have previously been applied to the process by which comets are scattered to the
inner Solar system from the Kuiper belt. Our analysis generalizes this for an arbitrary planetary
system. For particles scattered from an outer belt directly along a chain of planets, based on
the initial value of the Tisserand parameter, we find that it is possible to (i) determine which
planets can eject the particles from the system; (ii) define a minimum stellar distance to which
particles can be scattered; and (iii) constrain a range of particle inclinations (and hence the
disc height) at different distances. Applying this to the Solar system, we determine that the
planets are close to optimally separated for scattering particles between them. Concerning
warm dust found around stars that also have Kuiper belt analogues, we show that, if there is
to be a dynamical link between the outer and inner regions, then certain architectures for the
intervening planetary system are incapable of producing the observations. We speculate that
the diversity in observed levels of warm dust may reflect the diversity of planetary system
architectures. Furthermore, we show that for certain planetary systems, comets can be scattered
from an outer belt, or with fewer constraints, from an Oort cloud analogue, on to star-grazing
orbits, in support of a planetary origin to the metal pollution and dustiness of some nearby
white dwarfs. In order to make more concrete conclusions regarding scattering processes in
such systems, it is necessary to consider not only the orbits available to scattered particles, but
also the probability that such particles are scattered on to the different possible orbits.

Key words: comets: general – Kuiper belt: general – planets and satellites: general – planets
and satellites: dynamical evolution and stability – planet–disc interactions – white dwarfs.

1 IN T RO D U C T I O N

The scattering of small bodies is an important dynamical process in
many planetary systems. One classic example is the population of
small bodies close to the Sun, many of which originate farther out
in the Solar system, from where they were scattered inwards. Near-
Earth asteroids originate in the asteroid belt. Many left the belt after
being destabilized by resonances with Jupiter and then scattered
by the terrestrial planets (Morbidelli et al. 2002). Visible comets
are objects scattered inwards either from the Kuiper belt or from
the Oort cloud (Levison & Duncan 1997). The scattering of small
bodies has not been considered in detail for extrasolar planetary
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systems, mainly due to the lack of constraints on the structure of
the planetary system. There is, however, evidence for small bodies
in many extrasolar planetary systems. Dust belts, known as de-
bris discs, are seen around hundreds of main-sequence stars (Wyatt
2008). Observations, particularly resolved images, suggest that de-
bris discs interact with planets (Greaves et al. 2005; Kalas, Graham
& Clampin 2005; Moerchen et al. 2011), etc. Assuming a similar
nature to our Solar system, it is reasonable to expect that scattering
in these systems can also result in a comet-like population. The
expected level and distribution of this comet population may differ
substantially from the Solar system, depending on the individual
planetary system architecture.

Evidence of such a comet-like population may exist from obser-
vations of warm dust discs around a handful of main-sequence stars
(Gaidos 1999; Beichman et al. 2005; Song et al. 2005; Wyatt et al.

C© 2012 The Authors
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



Scattering in planetary systems 2991

2005). Comets or asteroids in the position of the observed dust belts
have a short lifetime against collisions and drag forces. They cannot
have existed for the entire main-sequence lifetime in their observed
position (Wyatt et al. 2007). One possible explanation is that the
material originated in a cold, outer belt. It could be that we are
observing a comet-like population that is continuously replenished
from the scattering of material from the outer belt by intervening
planets (Wyatt et al. 2007). Alternatively, it could be a transient
event, resulting from the stochastic collision of two larger bodies
(Song et al. 2005), maybe in a similar manner to the impact that
formed the Earth–Moon system, or material could be transported
inwards from the outer belt during a Late Heavy Bombardment
type event (Booth et al. 2009) or by drag forces (Reidemeister et al.
2011).

Another piece of evidence for the scattering of material in exo-
planetary systems comes from observations of evolved stars. 25 per
cent of DA white dwarfs show unexpected metal pollution (Zuck-
erman et al. 2003), whilst 1–3 per cent of DA-type white dwarfs
with cooling ages less than 0.5 Gyr have excess emission in the
infrared consistent with a close-in dust disc (Farihi, Jura & Zuck-
erman 2009). The composition of the polluting material closely
resembles planets (Klein et al. 2010) and there is good evidence
that it is not material accreted from the interstellar medium (Farihi
et al. 2010a). The best theories therefore suggest that it originates
in an outer planetary system (Jura 2003; Gänsicke et al. 2006; Kilic
et al. 2006; von Hippel et al. 2007; Farihi et al. 2009, 2010b; Melis
et al. 2010). As the star loses mass on the giant branch, dynamical
instabilities can be induced in the outer planetary system (Debes
& Sigurdsson 2002). These can lead to comets or asteroids being
scattered by interior planets on to star-grazing orbits, where they
are tidally disrupted. Material from the tidally disrupted asteroids
or comets forms the observed discs and accretes on to the star. The
ability of evolved planetary systems to scatter comets or asteroids
on to star-grazing orbits requires further detailed investigation, al-
though previous work has considered an Oort cloud origin of the
scattered bodies (see e.g. Alcock et al. 1986; Debes & Sigurdsson
2002).

In this work, the scattering of small bodies in an arbitrary plan-
etary system is investigated. N-body simulations are typically used
to model such scattering (Holman & Wisdom 1993; Levison &
Duncan 1997; Horner & Jones 2009). A deeper understanding of
the general properties of such scattering can, however, be achieved
using analytical arguments. Simulations of scattered Kuiper belt ob-
jects have found that the scattering process can be approximated as
a series of three-body problems, as the scattered bodies are passed
from one planet to the next (Levison & Duncan 1997). While such
particles are under the influence of one of the planets, their dy-
namical evolution can be approximated by the circular restricted
three-body problem in which the orbits of the particles must be
such that their Tisserand parameters, Tp (Tisserand 1896; Murray
& Dermott 1999), are conserved, where

Tp = ap

a
+ 2

√
(1 − e2)a

ap
cos(I ), (1)

where a, e and I are the comet’s semi-major axis, eccentricity and
inclination, respectively, and ap is the planet’s semi-major axis. This
conservation is so fundamental to cometary dynamics that it is used
to classify cometary orbits (Horner et al. 2003; Gladman, Marsden
& Vanlaerhoven 2008).

In this work, we use the conservation of the Tisserand parameter
to constrain the orbits of scattered particles in a planetary system

with an arbitrary configuration. In Section 2, we discuss how plan-
etesimals are scattered from an outer belt, in an otherwise stable
planetary system. We then outline our constraints on the orbits of
particles scattered by a single planet in Section 3, which we extend
to two planets in Section 4 and arbitrarily many planets in Section 5.
In Section 6, we consider the application of this analysis to our Solar
system, systems with warm dust discs and polluted white dwarfs.

2 SCATTERI NG O F PLANETESI MALS

During the planet formation process, a planet that forms in a disc of
planetesimals will swiftly clear a zone around it, both by scattering
processes and by resonant interactions with the planet. Analytically,
the size of the planet’s cleared zone can be approximated. The
criterion for the overlap of mean motion resonances determines a
region around the planet within which orbits are chaotic (Wisdom
1980), whilst the Jacobi constant can be used to determine the zone
within which orbits can be planet-crossing (Gladman & Duncan
1990). Simulations have shown that Neptune clears such a zone
in less than 105 yr (Holman & Wisdom 1993; Levison & Duncan
1993), but more generally one might expect 1000 conjunctions for
this clearing to take effect (Duncan, Quinn & Tremaine 1989).
Material removed from this region may be ejected, whilst some
fraction remains on bound, eccentric orbits, with pericentres close
to the planet’s orbit, forming an analogue to Neptune’s scattered
disc. After many scatterings, some of this material may reach far
enough from the star to interact with the Galactic tide (Tremaine
1993) and eventually populate an analogue of the Oort cloud.

Planetesimals outside this zone could in principle be long-term
stable. However, N-body simulations of Neptune and the Kuiper
belt find that Kuiper belt objects are still scattered by Neptune at
late times (Holman & Wisdom 1993; Duncan, Levison & Budd
1995; Levison & Duncan 1997; Morbidelli 1997; Emel’yanenko,
Asher & Bailey 2004). The Kuiper belt has a complicated struc-
ture of stable and unstable regions. The gravitational effects of
Neptune and the inner planets result in the overlap of secular or
mean motion resonances producing thin chaotic regions, within
the otherwise stable region (Kuchner, Brown & Holman 2002;
Lykawka & Mukai 2005) and small unstable regions within oth-
erwise stable mean motion resonances (Moons & Morbidelli 1995;
Morbidelli & Moons 1995; Morbidelli 1997). Objects may diffuse
chaotically from stable to unstable regions (Morbidelli 2005). This
process has been shown to occur for Neptune’s 3:2 and 2:1 reso-
nances, amongst others (Morbidelli 1997; Nesvorný & Roig 2000,
2001; de Elı́a, Brunini & di Sisto 2008; Tiscareno & Malhotra 2009).
Objects leaving mean motion resonances in the Kuiper belt, in this
way, may be the main source of Neptune encountering objects at
the age of the Solar system (Duncan et al. 1995). Many of these
objects are scattered into the inner planetary system, and could be
the source of Centaurs or Jupiter Family comets (Holman & Wis-
dom 1993; Levison & Duncan 1997; Morbidelli 1997; di Sisto,
Brunini & de Elı́a 2010).

The dynamical processes occurring in the Kuiper belt may well
be applicable to exoplanetary systems with a similar structure, that
is, an outer planetesimal belt and interior planets. The outer belt
could be truncated by resonance overlap (Wisdom 1980). Most
particles would then inhabit a predominately stable region exterior
to this, containing small regions that are unstable due to the overlap
of secular or mean motion resonances of the inner planets. Objects
could diffuse chaotically on long time-scales from the stable to
unstable regions and be scattered by the outer planet. Some of these
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scattered objects could enter the inner planetary system, whilst some
could be ejected.

In our consideration of the dynamics of material scattered from
the outer belt by interior planets, we find that these dynamics are
strongly dependent on the initial value of the Tisserand parameter,
with respect to the outermost planet. Therefore, it is important to
consider the value of this parameter. Objects in the outer belt tend to
have T > 3, whilst in order that an object be scattered by the planet,
the Tisserand parameter must be less than 3. Hence, for particles that
are scattered at late times due to chaotic diffusion into an unstable
region, at the time of first scattering, the Tisserand parameter would
be expected to be close to 3. Simulations of our Solar system found
this to be the case (Levison & Duncan 1997). Here, we consider
the initial value of the Tisserand parameter of such particles as an
unknown, with the expectation that objects scattered in the way
described will have initial Tisserand parameter values just below 3.

As a final note, we point out that not all objects scattered by
Neptune originate from the cold Kuiper belt. The two other main
sources are Neptune’s scattered disc and the Oort cloud. It is pos-
sible that similar classes of objects exist in exoplanetary systems;
however, there is at present no evidence for exo-Oort clouds or scat-
tered discs. The distribution of the Tisserand parameter for such ob-
jects would differ significantly from those that leave the cold Kuiper
belt, in particular for Oort cloud objects, where it is unconstrained
and T < 2 is possible. Therefore, for clarity and simplicity, in this
work, we focus on the objects that originate in an outer belt and that
are first scattered by the outermost planet, at the age of the system.

3 SC AT T E R I N G BY A S I N G L E P L A N E T

First, we consider a system similar to that described in the previous
section, with a single planet, labelled by subscript i on a circular orbit
at ai, and an exterior planetesimal belt. We consider planetesimals
scattered from the outer belt by the planet. We make the simplifying
assumption that planetesimals only interact with the planet if their
orbits directly cross the planet’s orbit. This simplifies the following
analysis and enables analytical limits to be easily derived. However,
since in reality interactions will occur in a zone around the planet,
care should be taken in rigorously applying any of the derived limits,
in particular for more massive planets. This will be discussed further
in Section 7.

3.1 Orbital constraints

For a planetesimal with a given value of the Tisserand parameter
with respect to this planet, Ti, the potential orbits on to which it can
be scattered are limited, no matter how many times it interacts with
the planet. The Tisserand parameter gives us no information about
the probability for any given interaction to scatter a planetesimal
on to a given orbit, nor the time-scales for interactions to occur.
It does, however, limit the orbital parameters of the planetesimals
after the interaction, in terms of its pericentre, q, eccentricity, e,
and the inclination, I, of its orbit with respect to the planet’s. These
constraints can be represented by a 3D volume in (q, e, I) space.
A planetesimal, given an initial value of Ti, may not be scattered
on to an orbit with parameters outside this volume, in this simple
example.

This parameter space can be fully mapped out analytically by
rewriting equation (1) as

Ti = ai(1 − e)

q
+ 2

√
(1 + e)q

ai

cos(I ), (2)

and noting that if the planetesimal is to remain on a bound orbit,
0 < e < 1, −1 < cos (I) < 1 and q > 0 must apply. In order that the
particle is scattered by the planet, its orbit must cross the planet’s
and thus Q > ai and q < ai must apply. Applying these constraints to
equation (2) places analytical bounds that define this 3D volume of
permitted orbits. Given the difficulties in presenting a 3D volume,
we instead present the 2D projection of this 3D volume on to the
q–e, I–q and e–I planes, shown in Fig. 1. The analytical bounds are
presented in Table 1.

3.2 Minimum pericentre

Further examination of the q–e plot in Fig. 1 makes clear that plan-
etesimals cannot be scattered farther towards the star than a limiting
value, qmin, determined by values of the Tisserand parameter greater
than 3. This value can be calculated using constraints on the orbital
parameters, Q = ai and cos (I) = 1 (equivalent to the lower bound
in the q–e plane). For 2 < Ti < 3

qmin

ai

= −T 2
i + 2Ti + 4 − 4

√
3 − Ti

T 2
i − 8

. (3)

qmin as a function of Ti is shown in Fig. 2. The eccentricity at qmin

will be given by

elim = Ti − 3 + 2
√

3 − Ti. (4)

For Ti < 2, the lines Q = ai and cos (I) = 1 (positive root)
no longer cross and the parameter space in the q–e plane is no
longer bounded by Q = ai, rather by cos (I) = 1 (both positive and
negative roots). Therefore, qmin → 0. This can be shown to be true
by considering the derivatives of the lines:

dq

de

∣∣∣∣∣
cos I=1,q→0

>
dq

de

∣∣∣∣∣
Q=ai ,q→0

. (5)

Importantly, this implies that the constraints on the pericentre
that apply to the orbits of objects with Ti > 2 are not applicable to
those with Ti < 2; such objects can be scattered on to orbits with
any pericentre.

3.3 Ejection

A single planet can also eject planetesimals, given a suitable value
of the Tisserand parameter. Unbound orbits (i.e. those with e > 1)
are not included in the plots in Fig. 1. It is, however, possible to
determine from the top panel of Fig. 1 those values of the Tisserand
parameter for which the particles are constrained to bound orbits
with e < 1. The most eccentric orbits are those with pericentre at
the planet’s orbit (q = ai); therefore, substituting into equation (2),
(q = ai, e = 1, I = 0◦), we find that there is a limit on the Tisserand
parameter such that only objects with Ti < 2

√
2 can be ejected.

This has been previously calculated in, amongst others, Levison &
Duncan (1997), using the formulation for the Tisserand parameter of
a parabolic orbit. It should, however, be noted that this only applies
strictly for low-mass planets. As the planet mass is increased, so
does the zone of influence of the planet. If we assume that particles
can interact with a planet if they are within a distance � from the
planet, then a particle on a hyperbolic orbit with Tp = 3 and q = 9

8 ap

can still be ejected if q < ap + �. � will be a function of the planet’s
Hill radius, RH; for example, if � ∼ 2

√
3RH (Gladman & Duncan

1990), then Jupiter can eject particles with TJup = 3, whilst Neptune
cannot.
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Figure 1. The possible orbital parameters of particles scattered by a single planet, with a given value of the Tisserand parameter with respect to that planet, Ti.
This forms a 3D parameter space, which is shown here projected on to the eccentricity–pericentre (e–q) plane, the inclination–pericentre (I–q) plane and the
eccentricity–inclination (e–I) plane. The limits of the parameter space are defined analytically in Table 1. The unit of the pericentre is the planet’s semi-major
axis and the dotted black line in the top row of panels shows the line where the particle’s semi-major axis is equal to the planet’s (a = q

1−e
= ai ).

4 SC AT T E R I N G BY TWO P L A N E T S

Now consider a planetary system with an outer belt and two interior
planets, both on circular orbits. Particles from the outer belt are
scattered by the outer planet, planet 1. The main possible fates of
such particles are ejection, collision with a planet or the star, further
scattering interactions with this planet, or scattering by the inner
planet, planet 2. Many scattered particles are scattered multiple
times by the outer planet. It dominates their dynamics for a certain
period of time, during which the Tisserand parameter, with respect
to this planet, T1, is conserved. At some point, the particle may be
scattered on to an orbit that overlaps with the inner planet and it
may be scattered by that planet. In such an interaction, the Tisserand
parameter with respect to the inner planet, T2, would be conserved,
rather than T1. Depending on the new orbit, it is then likely that the

particle is re-scattered by the inner planet and for a certain period
its dynamics will be dominated by that planet.

We start by considering this simple situation where the particle is
passed from planet 1 to planet 2. This is used to describe constraints
on the orbits of scattered particles. We then consider the possibility
that particles are scattered backwards and forwards between the two
planets in Section 4.4.

4.1 Orbital constraints

For a particle scattered by the outer planet, the Tisserand parameter,
T1, is conserved. The value of T1 constrains the orbits, (q, e, I),
of scattered particles to those shown in Fig. 1 which satisfy equa-
tion (2). Although only sets of the orbital parameters, q, e, I, that
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Table 1. The analytical boundaries on the parameter space constraining the potential orbital
parameters of a particle scattered by a planet, where the initial value of the Tisserand
parameter is Ti. All units are in terms of the planet’s semi-major axis, ai = 1. For the cases
where more than one limit is stated, the upper of the two applies.

Plane Line Constraint Based on

q–e: upper Dashed e = 1 + 2q3 − qTi + 2q3/2
√

2 + q3 − qTi cos (I) = ±1

q–e: lower Dot–dashed e = (1−q)
(1+q) Q = 1

I–e: upper Dashed cos(I ) = Ti−1−e

2
√

1−e
Q = 1

I–e: upper Dotted cos(I ) = Ti−1+e

2
√

1+e
q = 1

I–e: lower Dot–dashed cos(I ) = T
3/2
i

3
√

3(1−e2)

∂I
∂q

|e,Ti
= 0

I–q: upper Dot–dashed cos(I ) = Ti (1+q)−2
2
√

2q(1+q)
Q = 1

I–q: lower Dotted cos(I ) = Ti

2
√

2q
e = 1

Figure 2. The minimum pericentre for a test particle scattered by a single
planet, as a function of the Tisserand parameter value, from equation (3).
For Ti < 2, qmin → 0.

satisfy equation (2) are allowed, the full range of possible values is
given by

q ∈ [qmin(T1), 1],

e ∈ [0, emax(T1)],

I ∈ [0, Imax(T1)], (6)

where qmin is given in equation (3),

Imax = cos−1(
√

T1 − 2) (7)

and

emax = 3 − T1 + 2
√

3 − T1. (8)

As mentioned earlier, if T1 > 2
√

2, then emax > 1 and some orbits
are unbound.

The particle may interact many times with the outer planet, mov-
ing between orbits in this parameter set, until at some point it
encounters the next planet, planet 2. Only a subset of the orbits
specified by T1 can interact with the next planet, planet 2. These
are shown by the green filled area in Fig. 3 and are those orbits that
cross the planet’s, with q < a2 and

q ∈ [qmin(T1), a2],

e ∈ [eint

(a2

a1

)
, elim(T1)],

I ∈ [0, Imax], (9)

Figure 3. The orbital parameter space as determined by the Tisserand pa-
rameter, in the eccentricity–pericentre plane, for Ti = 2.9 (equivalent to the
fourth panel in the top row of Fig. 1). The bounds on this space are between
the dashed (cos I = 1) and dot–dashed lines (q = ai) and shown in green.
The subset of this orbital parameter space that can interact with an inner
planet placed at ain = 0.8ai is shown by the vertically hashed region, whilst
the subset that could interact with an outer planet placed at aout = 1.5ai is
shown by the horizontally hashed region. The dotted line shows a = ai, the
solid line q = ain and the triple-dot–dashed line Q = aout.

where

eint = a1 + a2

a1 − a2
. (10)

If a2
a1

< T1−2
4−T1

, then the set of orbital parameters with I = Imax do
not cross the inner planet’s orbit. This occurs if the second planet is
inside the maximum in I as a function of q that occurs at q = T1−2

4−T1
a1

(see Fig. 1), in which caseI is constrained to be less than Iint rather
than Imax, where

Iint = cos−1

⎛
⎜⎜⎝T1

(
1 + a2

a1

)
− 2 a2

a1

2

√
2
(

1 + a2
a1

)
⎞
⎟⎟⎠ . (11)

Once the particle is scattered by planet 2, T1 is no longer con-
served, instead the value of T2 when the particle is first scattered by
planet 2 is conserved. The range of possible T2 values is determined
by the initial value of T1 and the planets’ orbits, specified by the
ratio of the planets’ semi-major axes, a2

a1
.
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The minimum possible value that T2 can have occurs for particles
on orbits with minimum pericentre (q = qmin), the corresponding
eccentricity (e = elim), and in the orbital plane of the planets (I =
0◦). It is given by

T2,min = a2(1 − elim)

qmin
+ 2

√
(1 + elim)qmin

a2
, (12)

where elim (equation 4) and qmin (equation 3) are functions of T1.
Since the Tisserand parameter (T2) is a monotonically increasing

function of q, T2 will be maximum for the orbit with the largest
value of the pericentre, q, that still crosses the planet’s orbit, that
is, q = a2. For the range of T2 values for orbits with q = a2, the
minimum is at cos I = ±1 and e = eX, where from the first row of
Table 1

eX = 1 + 2

(
a2

a1

)3

−
(

a2

a1

)
T1 + 2

(
a2

a1

)3/2

×
√

2 +
(

a2

a1

)3

−
(

a2

a1

)
T1. (13)

Hence, the maximum of T2 is given by

T2,max = (1 − eX) + 2
√

1 + eX. (14)

For the next time-period, the dynamics of the particle are con-
trolled by the second planet. It may be scattered once or many times.
Yet again, the particle’s orbit is constrained to orbital parameters,
(q, e, I), specified by the value of T2 and equation (2). This time,
however, we consider the situation where only T1 and the planets’
orbits are specified initially such that it is only known that T2 lies
between T2,min and T2,max. The full range for the orbital parameters
(q, e, I) is therefore specified by

qmin(T2,min) < q < 1, (15)

0 < e < emax(T2,min), (16)

0 < I < Imax(T2,min), (17)

where qmin is given by equation (3), emax by equation (8) and Imax

by equation (7), but as a function of T2,min rather than T1.

4.2 Constraints on which particles interact with the inner
planet

For specific planetary orbits, specified by the ratio of the planets’
semi-major axes, a2

a1
, and strict constraints on the initial value of the

Tisserand parameter in the outer belt (i.e. T1 close to 3), the orbits of
scattered particles may be constrained such that they never interact
with the inner planet. This occurs when the minimum pericentre to
which particles may be scattered by the outer planet is farther from
the star than the inner planet’s orbit; qmin(T1) > a2 (equation 3) or

−T 2
1 + 2T1 + 4 − 4

√
3 − T1

T 2
1 − 8

>
a2

a1
. (18)

4.3 Minimum pericentre

In Section 3.2, equation (3), we determined the minimum pericentre
to which a single planet may scatter a particle. A similar calculation
may be made for two planets, assuming that particles are only
passed once along the chain of planets. The minimum pericentre

Figure 4. The minimum pericentre for a test particle scattered by two
planets, as a function of the ratio of the inner planet’s semi-major axis to the
outer planet’s semi-major axis.

will depend on the Tisserand parameter with respect to the outer
planet, T1, and the ratio of the planets’ semi-major axes, a2

a1
.

For a particle that is scattered by the outer planet, with a value of
the Tisserand parameter with respect to that planet of T1, if it is then
scattered by the inner planet, then the particle could have a range
of possible values of the Tisserand parameter with respect to the
inner planet, between T2,min (equation 12) and T2,max (equation 14).
Since qmin (equation 3) is a monotonically increasing function of the
Tisserand parameter, the minimum pericentre for scattering by both
planets will be given by qmin(T2,min), where T2,min is the minimum
value of the Tisserand parameter (equation 12). If a particle is
to eventually be scattered inwards as far as possible by the outer
and inner planets, it must be passed from the outer to the inner
planet with an orbit of eccentricity e = elim(T2,min) (equation 4) and
inclination I = 0◦.

The minimum pericentre for a two-planet system is shown in
Fig. 4 as a function of the ratio of the planets’ semi-major axes,
a1
a2

. This is calculated from equation (3), such that q = qmin(T2,min),
where T2,min = T(q = ap, e = elim(T1), I = 0◦), using equation (2).
This has a clear minimum, which occurs at

a2,min = [1 + elim(T1)]1/3qmin(T1)

[1 − elim(T1)]2/3
, (19)

where elim and qmin are the minimum pericentre and limiting eccen-
tricity for scattering by the outer planet, given by equations (3) and
(8), respectively.

This means that the optimum configuration of two planets in terms
of their ability to scatter particles as close to the star as possible
involves planets positioned in semi-major axis at a2,min and a1. It
is interesting to note that the optimum position for the inner planet
is not as close to the star as the outer planet could possibly scatter
particles, i.e., qmin(T1), but closer to the outer planet. This is because
there is a balance between moving the inner planet closer to the star,
decreasing a2, such that qmin is decreased directly, and moving the
planet farther from the star, increasing a2, but decreasing T2 and
thus qmin. Of course this does not include any information about
the probability that the particle is ejected or collides with the planet
rather than being ejected.
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4.4 Further scattering

Scattering is not confined to the forward direction. Particles may
originate in the outer belt, be scattered inwards by the outer planet,
passed on to the inner planet, and then scattered back outwards again
to the outer planet. Constraints on which particles might re-interact
with the outer planet can be determined using a similar procedure
to that discussed in the previous section (Section 4.1) for particles
passed from the outer planet to the inner planet.

The possible values for the orbital parameters of particles scat-
tered by the inner planet are determined by the value of the Tisserand
parameter, T2. A subset of these orbits cross the outer planet’s orbit,
those with apocentres outside its orbit (Q > a1). For the example
of an outer planet at a1 = 1.5a2 and with T2 = 2.9, this subset is
shown by the hashed region in Fig. 3. Each set of orbital parameters
in this region (q, e, I) will specify a possible value for the Tisserand
parameter with respect to the outer planet, T1. The minimum possi-
ble new value of T1 occurs at the maximum pericentre (q = a2), the
maximum eccentricity [emax(T2), equation 8] and cos I = 1, such
that

T1,new,min = a1(T2 − 2 − 2
√

3 − T2)

a2

+ 2

√
(4 − T2 + 2

√
3 − T2)a2

a1
. (20)

If there are a range of values for T2, the smallest (e.g. T2,min for
equation 12) will give the lowest value of T1,new,min. The maximum
value of T1 such that particles can still interact with the outer planet
is 3, as for any scattering event.

If the particle is scattered backwards and forwards multiple times,
then this procedure may be repeated to determine the full range of
Tisserand parameter values and potential orbits. T1,new,min can be
significantly lower than the initial value of T1 in the outer belt, par-
ticularly after multiple scatterings backwards and forwards. Thus,
this increases the range of potential orbits of scattered particles.

This can be illustrated using an example system. Consider a
particle scattered by the outer planet, with T1 = 2.99. The inner
planet is placed arbitrarily at a2 = 0.7a1. The minimum pericentre
for the particle after the particle is scattered by both planets, shown
in Fig. 4, is qmin = 0.43a1. If the particle is then scattered back
outwards, then the minimum value of T1 is 2.93 (equation 20). If
the particle is then scattered back in, again from Fig. 4, then this
gives a new minimum pericentre for scattering by the two planets of
qmin = 0.12a1. After a further scattering backwards and forwards,
qmin → 0; all constraints on the eccentricity and pericentre of the
orbit are removed. Given sufficient repetitions, this occurs for all
pairs of planetary orbits, where the constraints on the Tisserand
parameter allow particles to be passed between them. Thus, the
orbital parameter space available to scattered particles can be greatly
increased by repeatedly scattering them backwards and forwards.

So far we have merely outlined the orbital parameter space avail-
able to particles and not discussed the probability for scattering
particles into this space. This is in general beyond the scope of this
paper; however, these have important implications for the passing
of particles backwards and forwards between the two planets. First,
it is clear that the time-scales for particles to be repeatedly scat-
tered backwards and forwards between two planets will be long and
therefore at any given time the probability will be higher that the
particles have merely been scattered by the outer planet, or passed
from the outer to the inner planet once. Secondly, although repeated
passing of particles between planets greatly increases the range of

orbital parameters available to such scattered particles, this does not
mean that it is most probable for such particles to be scattered on to
more extreme (higher eccentricity or inclination) orbits. In fact, if
we were to assume that a particle has an equal probability of being
scattered on to any of the orbital parameters available to it, then it
is most likely that the particle is scattered on to an orbit that retains
a value of the Tisserand parameter close to its original value. It is
only the few particles that are scattered on to extreme orbits, that
is, with low pericentre or high eccentricity/inclination, which have
significantly reduced values of the Tisserand parameter when they
are scattered by the next planet. Therefore, although it is possible
that particles may be scattered on to extreme orbits, with low values
of the Tisserand parameter, by being repeatedly passed backwards
and forwards between the planets, we anticipate that the probability
for this to occur is low and we are therefore justified in focusing on
particles scattered directly along a planetary system for the rest of
this paper.

5 MULTI PLANET SYSTEMS

All of the calculations discussed so far can be easily applied to
planetary systems with many planets. The procedure discussed in
Section 4.1 can be repeated many times to determine the full range
of orbital constraints and values for the Tisserand parameter after
scattering by each planet. This analysis places useful constraints
on the planets with which particles can interact, the planets that
can eject particles and the minimum pericentre to which the whole
system can scatter particles.

All of the dynamics are determined by the initial value of the
Tisserand parameter with respect to the outer planet, T1, the outer
planet’s semi-major axis, a1, and the ratio of the planets’ semi-
major axes to one another, ai+1

ai
. Scaling the system, that is, changing

the semi-major axes, ai, whilst keeping their ratios, ai+1
ai

, constant,
will not affect the dynamics (values of Ti) and merely scales the
minimum pericentre, qmin, with a1. In the next section, we discuss
these constraints in terms of an example planetary system.

5.1 A hypothetical five-planet system with constant ratio
of planets’ semi-major axes

We apply these calculations to a system of five planets separated
by a constant ratio of adjacent planets’ semi-major axes ( ai+1

ai
= α).

This corresponds to a constant number of Hill radii for equal-mass
planets. Our results are independent of the planet masses. We fix
the inner planet at a5 = ain and calculate the semi-major axes of the
other planets accordingly for a range of values for α.

The minimum pericentre to which this system can scatter parti-
cles, shown in Fig. 5 as a function of α, is calculated by repeatedly
determining the minimum value of the Tisserand parameter for
each planet. For the ith planet, this occurs at q = qmin(Ti+1,min)
(equation 3), e = elim(Ti+1,min) (equation 4) and cos I = 1.

In this plot, scattered particles exhibit three types of behaviour.
For simplicity, we label the three types of behaviour as ‘non-
interacting’, ‘constrained’ and ‘unconstrained’. This refers to
the constraints on the orbits of scattered particles. In the ‘non-
interacting’ regime, the planets are so widely separated (small α)
that particles cannot be scattered all the way along the chain of plan-
ets. The minimum pericentre to which one of the planets can scatter
particles is outside the next innermost planet’s orbit. Hence, the
particles are restricted to the region surrounding the outer planet(s).

In the ‘constrained’ regime, the planets are so close together
(large α) that particles can be scattered between all planets in the
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Figure 5. The variation in the minimum pericentre to which test particles
can be scattered by a system of five planets. The ratio of the planets’ semi-
major axes (α) is constant and is given as a ratio on the bottom axis and in
terms of separation in Hill radii, for five 10-M⊕ planets, on the top axis. The
initial value of the Tisserand parameter with respect to the outer planet is
varied between 2.8 and 3.0. The shaded region illustrates the ‘unconstrained’
regime for particles with T = 2.96, whilst the region to its left-hand side
is the ‘non-interacting’ regime and the region to its right-hand side is the
‘constrained’ regime (see discussion in text).

system. If they are only scattered once along the chain of planets,
the Tisserand parameter cannot vary significantly from its original
value and there will be a non-zero minimum pericentre to which
particles can be scattered. For such closely separated planets, it may
no longer be valid to treat the scattering as a series of three-body
problems and the probability that particles are passed backwards
and forwards between planets increases. This and the stability of
planets so close together question whether particles scattered in
any planetary system actually exhibit behaviour reminiscent of this
‘constrained’ regime.

As the separation of the planets is increased, the minimum pos-
sible value of the Tisserand parameter for each planet decreases
and hence the minimum pericentre for the whole system decreases.
Eventually, the separation is large enough that the Tisserand param-
eter falls below 2 and all constraints on the minimum pericentre are
removed. This forms the third, ‘unconstrained’ regime, where there
are few constraints on the orbital parameters of scattered particles.

In Fig. 6, the constraints on the eccentricities and inclinations of
particles in the three regimes are shown. As particles are scattered by
each planet, from the outermost (planet 1) to the innermost (planet
5), there will be a range of possible Tisserand parameter values,
between Ti,min (equation 12) and Ti,max (equation 14) and hence a
range of possible orbital parameters, given by equations (15)–(17),
although of course the approximations used to calculate these may
mean that they are not always strictly applicable (see discussion in
Section 7). It is the maximum inclination and eccentricity that are
important in this figure, although of course the orbits of scattered
particles will be distributed between the minimum and maximum
values, in a manner not determined by this analysis. The plot shows
that, for this example with T1 = 2.96, almost all planets can eject
particles (e > 1) and that the scaleheight of the disc (inclinations of
scattered particles) increases with decreasing distance from the star,
as the constraints on the orbits of scattered particles decrease with
each successive scattering event. It is clearly seen, as anticipated,
that the constraints of orbits in the ‘constrained’ regime are much
tighter than those in the ‘unconstrained’ regime.

Although very few real planetary systems have planets separated
by a constant ratio of their semi-major axes, it may be possible

Figure 6. Constraints on the eccentricities and inclinations (equations 15–
17) of particles scattered by a system of five planets with constant ratio of the
planets’ semi-major axes, α, and an initial value of the Tisserand parameter
in the outer belt of T1 = 2.96. Particles are scattered from the belt, outside
planet 1, to the innermost planet, planet 5. Three planet separations are
considered, corresponding to the three regimes (see discussion in the text):
‘non-interacting’, α = 0.2; ‘unconstrained’, α = 0.6; and ‘constrained’, α =
0.9. The dashed regions correspond to the parameters of particles that can
interact with the next interior planet (equation 9). The particles with high
eccentricity were scattered outwards and therefore are not on orbits that
cross the inner planet’s orbit.

to similarly classify the behaviour of scattered particles within the
three regimes and thus usefully better understand the future fate of
scattered particles.

5.2 Hypothetical multiplanet system separated by 10RH

For real planetary systems, the planets cannot be arbitrarily close to-
gether as dynamical instabilities are important. Chambers, Wetherill
& Boss (1996) find that planets must be separated by at least 10RH

to be stable. In Fig. 5, the separation of the planets is shown in terms
of Hill radii on the top axis, for a system of equal-mass (10-M⊕)
planets. This shows that for the 10-M⊕ planets considered, if they
are separated by 10RH, then the behaviour of particles is uncon-
strained (qmin → 0). Only very low mass (<10 M⊕) systems may
be dynamically stable (separated by more than 10RH) and have lim-
its on the scattering of particles, such that the particles’ behaviour
is in the ‘constrained’ regime.

Such low-mass systems are, however, unlikely to contain only
five planets. One possible outcome of planet formation is a chain
of low-mass planet embryos and an outer disc of planetesimals.
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Figure 7. The same as Fig. 5, but for tightly packed planetary systems, with
equal-mass planets separated by 10RH. The mass of the planets is shown on
the bottom axis, whilst the top axis shows α. As many planets as possible
that fit between 1 and 30 AU are included ; hence, the minimum pericentre
is no longer finite for large α.

Consider the example of such a disc in the position of the Solar
system’s Kuiper belt and a chain of interior, equal-mass planets,
between 1 and 30 au. If planets generally form on orbits as tightly
packed as possible (Barnes & Raymond 2004; Raymond et al. 2009),
then their separation will be ∼10RH. We investigate the dynamics
in such a system by varying the planet mass and thus the number
of planets that fit between 1 and 30 au. This is equivalent to varying
α. The results are shown in Fig. 7. The behaviour is identical to
the five-planet system in the ‘non-interacting’ and ‘unconstrained’
regimes; however, the ‘constrained’ regime no longer exists. This
is because the interior planets further increase the parameter space
available to scattered particles.

6 A PPLICATIONS TO REAL SYSTEMS

6.1 Solar system

This analysis can be applied to the planetary system that we un-
derstand best, our Solar system. There are three possible sources
of scattered bodies: the asteroid belt, the Kuiper belt and the Oort
cloud. Most of the discussion so far has applied to the scattering of
particles from a Kuiper-like belt; however, very similar processes
occur in the asteroid belt. As discussed in Section 2, we anticipate
that the Tisserand parameter for objects scattered out of the Kuiper
belt is close to 3. This should also apply to asteroids scattered from
the main belt by Mars. The main difference between scattered as-
teroids and scattered Kuiper belt objects will be in the distribution
of the Tisserand parameter, TMars or TNep. This work does not deter-
mine these distributions; however, we speculate that the distribution
of TMars may be spread to lower values than that of TNep. Jupiter is
a strong perturber and may be able to alter the orbital parameters
of an asteroid significantly in a single encounter. For Oort cloud
comets scattered by planets, on the other hand, the range of val-
ues of the Tisserand parameter is even larger, potentially including
many comets with Tp < 2. This means that although this analysis is
most usefully applied to scattered Kuiper belt objects, it can also be
applied to scattered asteroids, but it cannot place many limitations
on the orbits of scattered Oort cloud comets.

First, considering objects scattered out of the Kuiper belt. Useful
constraints can be made on their orbits in the outer planet region us-
ing this analysis; for example, particle inclinations are constrained

Table 2. The semi-major axes of Solar system plan-
ets, compared with the optimum semi-major axes in
terms of scattering particles inwards. These were cal-
culated using equation (19) for objects scattered from
the Kuiper belt by Neptune with TNep = 2.98 and sep-
arately for objects scattered from the asteroid belt by
Mars, with TMars = 2.98.

Planet Semi-major axis (au)

Observed Optimum

Neptune 30.1
Uranus 19.2 21.1
Saturn 9.58 10.5
Jupiter 5.20 3.3

Mars 1.52
Earth 1.00 1.18
Venus 0.72 0.74

Mercury 0.39 0.33

Figure 8. The minimum pericentre (qmin) to which Kuiper belt objects can
be scattered by Neptune and the outer Solar system planets (solid line) and
similarly for asteroids scattered by the terrestrial planets (dashed line), as
a function of the initial value of the Tisserand parameter with respect to
Neptune or Mars, respectively. The shaded area illustrates the ‘constrained’
region, for scattered Kuiper belt objects with diagonal shading in green
and for scattered asteroids with vertical shading in red. The ‘unconstrained’
region lies to the left-hand side of the plot and the ‘non-interacting’ regime
to the right-hand side.

to be below a maximum value, for example, 80◦, for scattered
Kuiper belt objects with TNep > 2.96, consistent with observations
of Centaurs (Gulbis et al. 2010). It can also be inferred that the
Solar system’s outer planets are well placed for scattering particles
between them. If TNep ≤ 2.982, then particles can be scattered, di-
rectly, all the way along the chain of planets to Jupiter, and Table 2
shows that using equation (19) the planets are placed close to op-
timal for scattering particles as far inwards as possible. The three
regimes presented in Section 5.1 can be applied to the Solar system
to show that the majority of scattered Kuiper belt objects exhibit
behaviour consistent with the ‘unconstrained’ regime. These are
shown in Fig. 8. If TNep < 2.962, then there are no constraints on
the orbits of scattered particles inside Jupiter. On the other hand, if
2.962 < TNep < 2.982, then the dynamics of scattered bodies are
‘constrained’ and there is a minimum value for the pericentre of
objects scattered by Jupiter, whilst if TNep > 2.982, then the par-
ticles are ‘non-interacting’ and cannot be scattered into the inner
planetary system.
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Similar constraints can be made for asteroids scattered into the
inner planetary region. If TMars < 2.97, then scattered objects be-
have as if they were in the ‘unconstrained’ regime and if TMars =
2.98, then equation (19) can be used in a similar manner to de-
termine that the terrestrial planets are close to optimally separated
for scattering particles between them (see Table 2). The important
question therefore is what fraction of scattered of asteroids have
TMars ∼ 2.98. If TMars is lower, then issues arise with some of the
approximations used in this work. For example, particles may not
be scattered directly along the chain of planets. For TMars < 2.96,
the minimum pericentre to which asteroids may be scattered by
Mars is already inside Venus’ orbit, qmin < aVenus (equation 3). Par-
ticles may interact directly with Venus before being scattered by
the Earth, or be scattered multiple times by both Venus and the
Earth. As described in Section 4.4, this would greatly increase the
range of potential orbits for scattered particles. Also mean motion
resonances and secular effects will play a greater role in altering the
dynamics of scattered asteroids than of scattered Kuiper belt ob-
jects, raising further doubt as to the validity of this approach. It can
nonetheless be used cautiously to further investigate the dynamics
of asteroids scattered into this region.

6.2 Warm dust discs

As discussed in the Introduction, there are many observations of
stars with warm dust belts (e.g. Gaidos 1999; Beichman et al. 2005;
Song et al. 2005). Many of the systems with warm dust also have
cold dust belts, amongst others are η Corvi (Wyatt et al. 2005;
Smith, Wyatt & Haniff 2009), β Leo (Churcher et al. 2011) and ε

Eri (Backman et al. 2009). The analysis presented here can be used
to consider the scattering of particles from an outer belt inwards,
as a potential explanation for the observed warm belts. Our main
conclusion is that the architecture of a planetary system determines
whether or not material can be scattered to the position of the ob-
served belt. We therefore speculate that the diversity of planetary
system architectures could result in the diversity of observed sys-
tems, both in terms of disc radii and in terms of the ratio of the
flux from the outer to the inner belt. Although this analysis does not
determine what fraction of the scattered particles end up in the posi-
tion of the observed disc, it does show that some planetary systems
cannot scatter particles on to the required orbits and illustrates that
when the distribution of scattered particles is determined, tight con-
straints will be placed on the architecture of the planetary system
required.

Consider the example system of η Corvi, with cold and warm
dust. The inner belt is resolved and lies between 0.16 and 2.98
AU (Smith et al. 2009), whilst the outer belt is at 150 ± 20 AU
(Wyatt et al. 2005). Although there are no planets detected in this
system, it seems probable that there is a planet close to the inner
edge of the cold, outer belt, which truncates it (Wyatt et al. 2005).
We therefore consider a planet at 100 au. If the Tisserand parameter
with respect to this planet is T1 = 2.96, then this planet alone could
potentially scatter particles in as far as 47 AU (equation 3). In order
for particles to be scattered inwards to the location of the warm belt,
qmin < 3 au, at least three planets are required. The optimum position
for these planets is 58 and 23 au, with the outer planet at 100 AU
(equation 19). The orbits cannot vary significantly from these values
if the minimum pericentre is to remain less than 3 au. For example,
if the planets were positioned at 100, 80 and 60 au, then particles
could only be scattered in as far as 6 au, and thus the warm dust belt,
if it formed, would be at larger radii. Alternatively, there could be
more than three planets, the initial value of the Tisserand parameter

could be less than 2.96, or particles could be scattered multiple
times backwards and forwards between the planets, as discussed in
Section 4.4.

6.3 Metal-polluted white dwarfs and white dwarfs
with close-in circumstellar discs

Evidence of evolved planetary systems and scattering of planetary
material is found in the observations of metal-polluted white dwarfs
(Zuckerman et al. 2003; Koester et al. 2005) and white dwarfs with
close-in circumstellar discs (Farihi et al. 2009). In order to explain
these observations with planetary material, comets or asteroids must
be scattered on to star-grazing orbits and tidally disrupted. The anal-
ysis presented in this work can be used to determine the feasibility
of this explanation.

Planets are required to scatter comets or asteroids close enough to
the star. There are three potential reservoirs in an evolved planetary
system, a Kuiper belt analogue, an Oort cloud analogue and, if it
survives, an asteroid belt analogue. This analysis shows that it is
possible for particles from all three reservoirs to be scattered on
to star-grazing orbits, but that this ability depends strongly on the
planets’ orbits and the initial value of the Tisserand parameter. The
lower the initial value of the Tisserand parameter, the more likely
that particles can be scattered sufficiently close to the star (the lower
qmin, Fig. 2). Hence, the majority of particles from an Oort cloud
analogue can be scattered on to star-grazing orbits, whilst for a
Kuiper or asteroid belt analogue this ability is strongly dependent
on the initial value of the Tisserand parameter and the planets’
orbits. Asteroid belt analogues have the advantage of lower initial
values for the Tisserand parameter, but the disadvantage is that there
may be fewer surviving interior planets and the asteroid belt itself
may not survive until the white dwarf phase.

There are a large number of observations of Kuiper belt analogues
around main-sequence stars (Wyatt 2008) and models find that such
systems survive the star’s evolution (Bonsor & Wyatt 2010). Such
belts have been suggested as the source of the metal pollution (see
e.g. Jura 2008), although there is little evidence that they are ca-
pable of scattering particles sufficiently close to the star. Here, we
show that it is possible for some planetary systems to scatter parti-
cles from an outer belt on to star-grazing orbits, but that there are
tight constraints on the planets’ orbits and the initial value of the
Tisserand parameter in the outer belt.

One potential hindrance in the ability of an evolved planetary
system to scatter particles on to star-grazing orbits is the absence of
inner planets due to the star’s evolution. Villaver & Livio (2007) find
that white dwarfs should not possess planets within 15 AU due to a
combination of the increased stellar radius, tidal forces and stellar
mass-loss. In order for a planet at ai = 15 AU to scatter particles
on to star-grazing orbits (qmin < R
), particles must have values
of the Tisserand parameter less than 2.05 when they interact with
the planet (equation 3). Only particles from an evolved Oort cloud
might have sufficiently low values of Tisserand parameter without
interacting further with other planets. Therefore, using a repetition
of the technique described in Section 4.1, if particles originate in
an outer belt with T1 > 2.97, then at least four planets are required
to scatter particles on to star-grazing orbits, whilst for 2.89 < T1 <

2.97 only three are required. Another potential hindrance is the
instability of many planetary systems after stellar mass-loss on the
giant branches (Debes & Sigurdsson 2002), if, for example, planets
are ejected. Examples of real planetary systems that could scatter
particles on to star-grazing orbits from a Kuiper-like belt include
our Solar system (if TNep < 2.96) and HR 8799 with planets at 14.5,
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24, 38 and 68 AU (Marois et al. 2008, 2010), if T1 < 2.95 in the
outer belt.

This analysis crucially shows that it is possible to scatter comets
or asteroids on to star-grazing orbits and places limits on the ar-
chitecture of a planetary system that can do this, but it does not
inform us about the probability of a given planetary system to scat-
ter planetesimals on to star-grazing orbits. Oort cloud analogues
only require a single planet to scatter material on to star-grazing
orbits, whilst constraints are placed on the orbits of planets and the
initial value of the Tisserand parameter required to scatter material
inwards from a Kuiper or asteroid belt analogue. Thus, this analysis
shows that material from an evolved Kuiper belt is a potential origin
of the metal pollution in white dwarfs, although fewer constraints
exist on the ability of an evolved Oort cloud to scatter comets on to
star-grazing orbits. This provides important evidence in support of
the planetary origin for the white dwarf observations.

7 D I SCUSSION OF LIMITATIONS

The purpose of this work is to present a simple analytical tool that
can be applied to many planetary systems. It determines the potential
orbital parameters of scattered particles, based on the initial value
of the Tisserand parameter and the planets’ orbits. It does not claim
to determine the probability for any particle to be scattered on to
a given orbit, nor the expected distribution of scattered particles.
In order to retain this simplicity, it was necessary to make several
assumptions that strictly limit the applicability of this analysis.
These are discussed below.

We anticipate that the behaviour described in this work will be
useful in interpreting N-body simulations of small body scatter-
ing in planetary systems. In such simulations, the initial value of
the Tisserand parameter for individual particles will be well con-
strained, and this means that it should be possible to describe their
subsequent evolution using the analysis presented here. However,
this presupposes that our simplifying assumptions are valid, and it
will be important to use N-body simulations to test this. The main
assumptions regarding the dynamics that we see are summarized
here.

One of the biggest limitations in the analysis presented here is
the dependence on the initial value of the Tisserand parameter in the
outer belt. This is in general an unknown quantity, although good
approximations can be made to its value, as discussed in Section 2,
and its value is determined in N-body simulations.

Here, the scattering of particles by a chain of planets is considered
as a series of three-body problems. This should be broadly true,
although some particles may be affected by secular or resonant
perturbations, or interact with a planet other than the one dominating
their dynamics during that period. This could alter the value of the
Tisserand parameter. Particles may also be passed backwards and
forwards along the chain of planets, as discussed in Section 4.4.

Another very important limiting assumption is that particles only
interact with the planet when their orbits exactly cross the planet’s
orbit, whereas in reality there will be a small zone around the
planet within which a particle may be scattered by the planet. The
size of such a zone depends on the planet’s mass and therefore its
inclusion into the calculations would introduce a mass dependence
on the analysis presented here. For the low-mass planets, all of
the analysis presented here should be valid, whilst for higher mass
planets care must be taken when rigorously applying some of the
derived limits. This is illustrated in Fig. 9, which shows the extension
to the orbital parameter space for particles that can interact with the

Figure 9. The extension of the orbital parameter space available to scattered
particles with Tp = 2.98. This is analogous to the plots in the top row of
Fig. 1, except that the particles are allowed to interact with the planet
within a zone of size � ∼ RH, for a Jupiter-mass (green) and Neptune-
mass (red) planet. For the Neptune-mass planet, the orbital parameter space
available to scattered particles is not altered significantly from that shown in
Fig. 1, whereas for the Jupiter-mass planet the strict limit on the minimum
pericentre is removed.

planet in a zone of size �
ap

. This extends the range of potential orbital
parameters of scattered particles, as orbits with Q > ap(1 − �) and
q < ap(1 + �) can interact with the planet, rather than just Q >

ap and q < ap. This orbital parameter space is shown in Fig. 9 for
Jupiter and Neptune, with � = RH and Tp = 2.98. Jupiter is massive
enough that there is no longer a limit on the minimum pericentre to
which particles can be scattered and the available parameter space is
increased by a small, but significant, amount. Neptune, on the other
hand, does not significantly extend the parameter space available
to scattered particles and therefore all of the analysis presented in
this paper will apply. For Jupiter-mass planets, the broad results
presented here can still be applied; however, care should be taken
when rigorously applying the derived limits.

Strictly, the conservation of the Tisserand parameter, and there-
fore this analysis, should only be applied to systems with coplanar
planets on circular orbits, that is, within the context of the circular
restricted three-body problem. It is, however, found that even when
these assumptions are relaxed, the analysis still applies approxi-
mately; for example, Murray & Dermott (1999) found only a small
change in the Tisserand parameter when they consider Jupiter’s ec-
centricity. Caution should, however, be exerted when applying this
analysis to some of the detected exoplanets with large eccentricities
(and relative inclinations).

8 C O N C L U S I O N S

The purpose of this work was to describes simply and analytically
the scattering of particles in any planetary system. This analysis
constrains the outcomes of scattering events, based on the conser-
vation of the Tisserand parameter (equation 1), in a manner that is
very useful for analysing the structure of many planetary systems
where the scattering of small bodies by planets is important. This
analysis can be used to better understand the behaviour seen in
N-body simulations.

We consider here the application to planetary systems where
small bodies are scattered from an outer belt by interior plan-
ets. The analysis could, however, easily be reformulated to con-
sider scattering by planets exterior to the belt. We assume that the
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scattering process can be approximated by a series of three-body
problems, during each of which the Tisserand parameter with re-
spect to the relevant planet is conserved. This constrains the possible
orbits of scattered particles, based solely on the initial value of the
Tisserand parameter and the orbits of the planets, with the assump-
tion that particles are passed directly along the chain of planets and
that particles only interact with the planet when their orbits directly
cross the planet’s orbit. In this case, there is no dependence on the
planet’s mass and it is only the ratio of planets’ semi-major axes
which is important. A dependence on planet mass would be intro-
duced if the interactions of particles with the planet within a zone
around the planet were included. This analysis places an important
limit on how far in particles can be scattered (qmin from equation 3)
and determines which planets the particles can interact with, which
can eject them and the potential height of the disc, based on the
maximum particle inclinations (equation 17). We consider the full
range of possible orbits of scattered particles, rather than their dis-
tribution.

In this work, we consider the application of this analysis to our
Solar system, main-sequence stars with both cold and warm dust
belts and metal-polluted white dwarfs. In the Solar system, this
analysis describes the scattering of Kuiper belt objects by Neptune
to become Centaurs and Jupiter Family comets, as well as asteroids
by Mars and the terrestrial planets. We show that the Solar system
planets are close to optimally separated for scattering particles be-
tween them. One explanation for main-sequence stars with warm
dust belts that cannot have survived for the age of the system in
their current positions is that material was scattered inwards from
an outer belt. If this is the case, this analysis shows that certain
architectures for the planetary system could not produce the ob-
servations. Given the strong dependence of the scattering process
on planetary system architecture, we speculate that the diversity
of such systems is a reflection of the variety of planetary system
architectures.

Observations of metal-polluted white dwarfs and white dwarfs
with circumstellar discs have been associated with material scattered
inwards from an outer evolved planetary system. Such material
can be scattered sufficiently close to the star from all Oort cloud
analogues and, given certain constraints on the system architecture,
from some Kuiper belt analogues. This strengthens the case for a
planetary origin to these observations, although this analysis does
not comment on the probability for particles to be scattered on to
such orbits.

In summary, the analytical tool presented here can aid our un-
derstanding and place useful constraints on the scattering of small
bodies in a wide range of planetary systems.
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