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ABSTRACT
We present the first application of the Machine Learning (ML) pipeline cecilia to determine the physical parameters and
photospheric composition of five metal-polluted He-atmosphere white dwarfs without well-characterised elemental abundances.
To achieve this, we perform a joint and iterative Bayesian fit to their SDSS (R=2,000) and Keck/ESI (R=4,500) optical spectra,
covering the wavelength range from about 3,800 Å to 9,000 Å. Our analysis measures the abundances of at least two —and
up to six— chemical elements in their atmospheres with a predictive accuracy similar to that of conventional WD analysis
techniques (≈0.20 dex). The white dwarfs with the largest number of detected heavy elements are SDSS J0859+5732 and
SDSS J2311−0041, which simultaneously exhibit O, Mg, Si, Ca, and Fe in their Keck/ESI spectra. For all systems, we find that
the bulk composition of their pollutants is largely consistent with those of primitive CI chondrites to within 1-2𝜎. We also find
evidence of statistically significant (> 2𝜎) oxygen excesses for SDSS J0859+5732 and SDSS J2311−0041, which could point to
the accretion of oxygen-rich exoplanetary material. In the future, as wide-field astronomical surveys deliver millions of public
WD spectra to the scientific community, cecilia aspires to unlock population-wide studies of polluted WDs, therefore helping
to improve our statistical knowledge of extrasolar compositions.

Key words: stars: white dwarfs - stars: atmospheres - stars: abundances - techniques: spectroscopic - methods: data analysis -
planets and satellites: composition

1 INTRODUCTION

For several decades, the search and characterisation of exoplanets
has primarily relied on two indirect observational techniques: transit
photometry, which measures periodic changes in the flux of a star due
to a transiting planet (Charbonneau et al. 2000), and high-precision
radial velocities, which track the Doppler shift of a star’s spectral
lines induced by a planet’s gravitational pull (Campbell et al. 1988).
These techniques provide, respectively, the radius and mass of the
planet, which can then be combined to estimate its bulk density and
infer its most plausible interior composition. At the heart of this
characterisation process are theoretical Mass-Radius (MR) diagrams
in which the planet’s radius and mass are compared to synthetic
interior models (Seager et al. 2007; Fortney et al. 2007; Zeng &
Seager 2008; Zeng & Sasselov 2013; Dressing et al. 2015). These

∗E-mail: mbadenas@mit.edu

diagrams have proved useful to broadly differentiate between rocky
or gaseous planets (Zeng et al. 2016). However, they are strongly
degenerate as they can yield more than one possible core composition
for an identical mass and radius measurement (Rogers & Seager
2010; Dorn et al. 2015). This ambiguity is further complicated by
the limited number of exoplanets with well-measured masses and
radii (Jontof-Hutter 2019), which makes it difficult to distinguish
between different planetary interiors.

As we seek to improve our knowledge of extrasolar bodies, it will
be crucial to mitigate the degeneracies of conventional exoplanet
characterisation techniques. Fortunately, spectroscopic observations
of “polluted” White Dwarfs (WDs) provide a solution to this prob-
lem by facilitating accurate measurements of the bulk composition of
exoplanetary material (e.g. Zuckerman et al. 2007; Klein et al. 2010;
Gänsicke et al. 2012; Rogers et al. 2024a). WDs are the degenerate
cooling remnants of low- and intermediate-mass (≤ 8 𝑀⊙) Main-
Sequence (MS) stars (Weidemann & Koester 1983). Their radius is
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similar to that of the Earth (𝑅WD≈1 R⊕), but their mass is half that of
the Sun (𝑀WD≈0.6 𝑀⊙). As a result, they are extremely dense and
compact, with surface gravities on the order 108 cm/s2. Due to their
strong gravitational fields, WDs should have pristine atmospheres
composed only of lightweight elements (i.e. H and/or He), with el-
ements heavier than He (or “metals;” atomic number Z>2) sinking
rapidly towards the unobservable stellar interior in timescales much
shorter than the evolutionary age of the star (Fontaine & Michaud
1979; Paquette et al. 1986).1 Nevertheless, contrary to this expecta-
tion, observations suggest that between 25% to 50% of isolated WDs
are contaminated with traces of metals, such as calcium (Ca), mag-
nesium (Mg), oxygen (O), silicon (Si), or iron (Fe) (e.g. Zuckerman
et al. 2003, 2010; Koester et al. 2014). At temperatures lower than
𝑇eff≲25,000 K, this phenomenon is likely due to the recent or ongo-
ing accretion of tidally disrupted material from a planetary system
that survived the post-MS evolution of its host star (e.g. see reviews
by Jura & Young 2014; Farihi 2016; Veras 2021; Xu et al. 2024).
In hotter systems, the outward flow of radiative levitation pressure
can also bring heavy elements to the surface (Chayer et al. 1995),
while in cool (𝑇eff≲10,000 K), helium-dominated WDs, the presence
of carbon can be attributed to convective dredge-up from the deep
stellar interior (Pelletier et al. 1986; Camisassa et al. 2017; Bédard
et al. 2022).

Since the discovery of three metals in the atmosphere of the He-
rich white dwarf “van Maanen 2” (van Maanen 1917; Weidemann
1960), the field of polluted WDs has consolidated into a valuable
discipline to infer the geology and chemistry of extrasolar bodies.
This inference process typically consists of two stages: first, detailed
atmosphere models are used to fit a WD spectrum and obtain the star’s
photospheric abundances (e.g. Koester 2009, 2010; Dufour et al.
2007). Next, the observed stellar abundances are used to constrain
the bulk composition of the polluting body via WD accretion and
diffusion equations (Koester 2009; Jura & Young 2014). In general,
the most polluted WDs only exhibit one or two metals in their spectra
(Williams et al. 2024), especially Ca and Mg in the optical (Coutu
et al. 2019), and Si in the Ultraviolet (UV) (Koester et al. 2014).
However, there are several dozen well-characterised polluted WDs
with multiple heavy elements in their atmospheres (e.g. Xu et al.
2019; Putirka & Xu 2021), including GD 362 with a total of 19
metals observed at the same time (Becklin et al. 2005; Zuckerman
et al. 2007; Xu et al. 2013, 2017; Melis & Dufour 2017). With the
exception of a few systems rich in water ices (e.g. Farihi et al. 2013;
Raddi et al. 2015), these discoveries have revealed that most WD
pollutants are relatively dry and rocky (Jura 2006; Zuckerman et al.
2007; Jura & Xu 2012a; Xu et al. 2019; Swan et al. 2019), with
compositions similar to those of bulk Earth or the CI chondrites
—i.e. the most primordial type of meteorites in the Solar System.

As of today, spectroscopic analyses of polluted WDs have enabled
the detection of more than 20 metals, revealing a diverse landscape
of extrasolar compositions (e.g. Klein et al. 2021; Xu et al. 2019;
Doyle et al. 2019). Despite these exciting discoveries, the scarcity of
polluted WDs with multiple heavy elements in their spectra, com-
bined with the low number of polluted WDs with well-measured el-
emental abundances, has impeded a statistical study of the pollution
phenomenon. In this paper, we address this problem by exploiting
the fast and automated Machine Learning (ML) pipeline cecilia
(Badenas-Agusti et al. 2024, or BA24 thereafter). This pipeline is

1 Diffusion timescales of heavy elements can vary from days to thousands of
years in warm, H-atmosphere WDs (spectral type DA), to millions of years
in cool, He-dominated systems (spectral type DB and DZ) (Koester 2009).

the first Neural-Network (NN)-based spectral interpolator capable
of rapidly estimating the elemental abundances2 of intermediate-
temperature He-atmosphere polluted WDs (10,000≤𝑇eff≤20,000 K)
from optical spectra covering the wavelength range between 3,000 Å
and 9,000 Å. More specifically, we use cecilia to measure the atmo-
spheric composition of five polluted WDs with existing SDSS spec-
tra, newly acquired Keck/ESI observations, and no well-measured
abundances in the literature.

This paper is organised as follows. In Section 2, we motivate the
study of He-rich polluted WDs using cecilia’s ML and Bayesian
framework. Section 3 details our target sample and the spectroscopic
observations analysed in this work. In Section 4, we provide an
overview of cecilia and describe our methodology for estimat-
ing the atmospheric composition of our targets. Section 5 presents
cecilia’s best-fit models and the geochemical properties of the WD
pollutants. In Section 6, we investigate the limitations of our com-
positional analysis and discuss potential improvements to our code.
Finally, we summarise our work and conclude in Section 7.

2 MOTIVATION

Our choice to study He-atmosphere polluted WDs is driven by two
key observational advantages. First, their lower photospheric opac-
ity compared to H-rich WDs makes it easier to observe low levels
of metal pollution (Dufour et al. 2012; Klein et al. 2021; Saumon
et al. 2022). Second, their extended convection zones often result in
longer metal diffusion timescales, which also facilitates the detection
of metal pollution (e.g. Zuckerman et al. 2010). From a computa-
tional perspective, we leverage the fast and automated interpolation
capabilities of cecilia to address the limitations of conventional
WD characterisation methods. These “classical” tools have under-
pinned the field of WDs for several decades, offering unique insights
into the bulk composition of extrasolar material. Nevertheless, they
involve time-intensive and manual work, so they would be too im-
practical and prohibitively expensive to analyse large samples of
polluted WDs. For example, in the coming years, multiple wide-
field spectroscopic surveys will deliver an unprecedented amount
of data to the WD community. This includes the Sloan Digital Sky
Survey V (SDSS-V; Kollmeier et al. 2017; Chandra et al. 2021, the
Dark Energy Spectroscopic Instrument (DESI; Cooper et al. 2023;
DESI Collaboration et al. 2016a,b), or WEAVE (Dalton et al. 2014),
which are expected to acquire spectra of about 100,000, 40,000, and
50,000 WDs, respectively, in the near future —some of which may
exhibit signs of metal pollution. This vast amount of data would be
intractable with conventional, “human-in-the-loop” methods. How-
ever, cecilia can obtain preliminary abundance measurements in
less than a month using a single GPU (Badenas-Agusti et al. 2024),
therefore offering a scalable solution to mine large databases with
minimal human supervision.

3 DATA

3.1 Target Selection

The five He-atmosphere polluted WDs considered in this work
are SDSS J0231+2512, SDSS J0859+5732, SDSS J1109+1318,
SDSS J1333+6364, and SDSS J2311−0041. In Table 1, we present

2 In this paper, abundances are expressed as logarithmic number abundance
ratios in base 10 relative to Helium, i.e. log10(n(Z)/n(He)).

MNRAS 000, 1–20 (2025)
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Table 1. Main astrophysical properties of the five He-atmosphere polluted WDs studied in this work. References (Ref.): [1] The Gaia Mission (Gaia Collaboration
et al. 2016, 2023), [2] The SDSS spectroscopic survey (York et al. 2000; Almeida et al. 2023), [3] The GALEX database (Martin et al. 2005), [4] The Pan-STARRS
database (Kaiser et al. 2010), [5] This paper. In particular, 𝑇eff and log g were obtained from an external fit to Pan-STARRS and SDSS photometry, while the WD
mass and the cooling age were derived from the MWDD evolutionary models of Bédard et al. 2020 (see Section 4.3), [6] “MWDD HE” column in the MWDD
(Dufour et al. 2016; see Section 4.3), [7] Spectral type from Coutu et al. 2019.

Property Ref. SDSS J0231+2512 SDSS J0859+5732 SDSS J1109+1318 SDSS J1333+6364 SDSS J2311−0041

Other Target Names

Gaia DR3 ID [1] 102350823010868736 1037518722660955392 3965233688795064832 1665473315344805760 2650975899537545728

SDSS ID [2] J023154.82+251259.5 J085957.20+573249.9 J110957.82+131827.9 J133306.98+634936.4 J231141.58−004100.7

GALEX ID [3] J023154.8+251259 J085957.2+573249 J110957.8+131827 - J231141.6−004100

Astrometric Properties

R.A. [J2020; h:m:s] [1] 02:31:54.82 08:59:57.19 11:09:57.83 13:33:06.99 23:11:41.58

Dec. [J2020; d:m:s] [1] +25:12:59.51 +57:32:50.01 +13:18:28.08 +63:49:36.38 −00:41:00.62

Parallax [mas] [1] 3.16±0.24 3.14±0.27 3.35±0.22 3.39±0.12 4.23±0.18

Distance [pc] [1] 316.59±24 318.94±27 298.36±20 294.94±11 236.46±10

𝜇R.A. [mas y−1] [1] 0.41±0.27 -4.32±0.23 -18.64±0.27 -32.54±0.17 -18.27±0.20

𝜇Dec. [mas y−1] [1] 8.22±0.27 -17.99±0.21 -32.79±0.21 -1.36±0.13 -23.86±0.19

Photometric Properties

Gaia Gmag [1] 18.89±0.04 19.11±0.03 18.73±0.03 18.52±0.01 18.71±0.01

SDSS gmag [2] 18.84±0.01 18.97±0.01 18.59±0.01 18.39±0.01 18.62±0.01

Pan-STARRS gmag [4] 18.840±0.004 19.03±0.01 18.63±0.01 18.44±0.01 18.650±0.004

Physical Properties

𝑇eff [K] [5] 12620±503 12677±722 15112±1688 14762±1340 12023±544

log g [cgs] [5] 7.76+0.14
−0.13 7.95+0.16

−0.15 8.09+0.20
−0.19 7.95+0.14

−0.13 8.07+0.10
−0.09

Mass [𝑀⊙] [5] 0.45+0.07
−0.06 0.56+0.10

−0.08 0.64+0.13
−0.11 0.56+0.08

−0.07 0.62+0.06
−0.06

Cooling Age [Gyr] [5] 0.24+0.06
−0.04 0.30+0.10

−0.07 0.23+0.13
−0.09 0.19+0.08

−0.06 0.42+0.09
−0.07

Luminosity [𝐿⊙] [5] 0.005+0.002
−0.002 0.004+0.002

−0.002 0.007+0.005
−0.004 0.007+0.004

−0.004 0.003+0.001
−0.001

Spectral Typea DB [6] DBZ [7] DBAH [6] DBZA [7] DBZ [7]

SDSS Observational Log

Date [MJD] [2] 2005 Nov 04 2003 Jan 23 2003 Dec 25 2000 Apr 05 2003 Nov 20

Spectrograph [2] SDSS SDSS SDSS BOSS SDSS

Plate ID [2] 2399 483 1751 6822 381

MJD ID [2] 53764 51924 53377 56711 51811

Fiber ID [2] 157 463 9 196 103

Wavelength Coverage [Å] [2] 3802-9191 3809-9215 3810-9206 3565-10341 3794-9198

Mean S/N [5] 17.03 8.60 10.45 27.85 10.91

Keck/ESI Observational Log

Date [UT] [5] 2016 Nov 19 2016 Nov 18, 2017 Mar 7 2017 Mar 7 2016 Mar 28 2016 Jun 8, 2016 Nov 19

Time [s] [5] 4,800 21,000 6,000 3,000 9,000

Standard Star [5] BD+28°4211 G191-B2B, Feige 34 HZ 44 BD+28°4211 BD+28°4211

Wavelength Coverage [Å] [5] 3915-9299 3915-9299 3915-9299 3915-9299 3915-9299

Mean S/N [5] 28 65 47 34 45

[a]: The estimated mass for SDSS J0231+2512 is below 0.5𝑀⊙ , which could point to the binary nature of this system (Rebassa-Mansergas et al. 2011). This
scenario was also proposed by the ML study of Vincent et al. (2023), where SDSS J0231+2512 was autonomously classified as a DB+M dwarf binary based on
its SDSS spectrum. Although we cannot fully rule out this hypothesis, we see no visual evidence of it in our spectra (e.g. no large RV variations, or M-dwarf-like
flux modulations in the red part of the spectrum). Moreover, the Renormalized Unit Weight Error (ruwe) of this object is 1.05, which falls below the Gaia DR3
threshold for unresolved binaries (ruwe>1.25; Penoyre et al. 2020).

MNRAS 000, 1–20 (2025)
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their full Gaia IDs and summarise their main astrophysical properties
and spectroscopic observations.

Our targets were selected from the sample of Koester & Kepler
(2015), who originally identified them as He-rich polluted WDs in the
Sloan Digital Sky Survey (SDSS; York et al. 2000). From this sam-
ple, we chose about 20 objects for follow-up at higher resolution and
signal-to-noise ratio (S/N) using the Echellette Spectrograph and Im-
ager (ESI) on the Keck II Telescope (Bigelow & Nelson 1998; Sheinis
et al. 2002) (programs: U067E, U131E, U153E, and U059; PI: B.
Zuckerman). Among the observed systems, our five WDs exhibited
the most interesting spectral features and were thus ideal candidates
for a detailed abundance analysis with cecilia. Beyond their pol-
luted nature, we also selected our targets based on two additional
criteria. First, their effective temperatures (𝑇eff) and surface gravities
(log g) satisfied cecilia’s allowed parameter bounds (see Table 1 in
BA24). Second, they all lacked well-measured photospheric compo-
sitions, with only estimates of their H and Ca abundances available
in the Montreal White Dwarf Database (MWDD; Dufour et al. 2016)
from the study of Koester & Kepler (2015).3

In our final target sample, only SDSS J1109+1318 had an esti-
mated Ca abundance from Koester & Kepler (2015) (−6.46±0.5)
slightly above cecilia’s maximum bound for this metal (−7.00).
However, we chose to include this object in our analysis because
cecilia revises its Ca abundance to be well within its acceptable
range (see Table 3). Morever, cecilia produces accurate fits to the
observed Ca spectral lines (Figure A2) and yields a fully converged
MCMC posterior distrubution that is not truncated at the upper limit
(Figure A6).4 For the remaining WDs, their published astrophysical
properties, including their H and Ca abundances, satisfied cecilia’s
allowed parameter space at the time of this writing.

3.2 Spectroscopic Observations

3.2.1 SDSS

All five WDs were observed with the SDSS spectrograph
(SDSS J0231+2512, SDSS J1109+1318, SDSS J0859+5732,
SDSS J2311−0041) or the upgraded BOSS spectrograph
(SDSS J1333+6364) mounted on the Sloan Foundation Telescope
at Apache Point Observatory (York et al. 2000; Gunn et al. 2006).
Their spectra (in vacuum) were downloaded as FITS files from the
SDSS DR18 online database5 and have a variable resolving power
(𝑅 ≡ 𝜆/Δ𝜆) of R≈1,500 at 3,800 Å and R≈2,500 at 9,000 Å. In our
optimisation routine, we assumed a fixed R=2,000 for each SDSS
dataset (see Section 4.3).

3.2.2 Keck/ESI

The five polluted WDs in our sample were also observed with the
Keck/ESI spectrograph (Sheinis et al. 2002) across 10 overlapping
orders covering the wavelength range 3,900−11,000 Å. All datasets
(in air) were obtained with a slit width of 1 arcseconds (′′), resulting

3 The MWDD (https://www.montrealwhitedwarfdatabase.org/) is
the largest database of spectroscopically confirmed WDs to date.
4 In line with the case of SDSS J1109+1318, systems that would a priori
be discarded for having 𝑇eff , log g, or abundance estimates near or beyond
cecilia’s bounds can be retained for atmospheric analysis if their MCMC
posterior distributions do not pile up at the limits, but instead remain well
inside cecilia’s boundaries.
5 https://skyserver.sdss.org/dr18/

in a resolving power of about R=4,500. The observing logs of the
Keck/ESI observations are presented in Table 1.

After acquiring the data, we carried out basic reductions using the
makee package,6 including bias subtraction, flat fielding, spectrum
extraction, wavelength calibration, and barycentric correction. We
performed flux calibration on the spectra by computing their cor-
responding instrumental sensitivity function. To this end, we used
Keck/ESI observations of spectrophotometric standards listed in the
database of the European Southern Observatory,7 obtained spatially
and temporally close to the science target observations. For each
WD, we computed the wavelength-dependent flux response of the
instrument using STIS spectra from the CALSPEC STScI database
(Bohlin et al. 2014).8 The instrumental response function was then
applied to the extracted spectra of the science targets to obtain a
flux-calibrated spectrum. We then stacked all the orders together to
generate a continuous spectrum by binning the wavelength, flux, and
flux uncertainties over an output wavelength grid spanning the full
wavelength range, with wavelength spacing defined by the lowest res-
olution order to conserve flux. For WDs that were observed multiple
times (either during the same night or on different days; see Table
1), we followed a similar stacking strategy and combined all their
existing observations into a final spectrum with an improved S/N.

3.3 Data Treatment

Next, we visually inspected the SDSS and reduced Keck/ESI spectra
to minimise the impact of spurious effects, instrumental noise, and
telluric contamination. We first eliminated scattered outliers, sky-
lines, infinite (NaN) flux points, and flux error measurements equal
to zero. We then cleaned the SDSS and Keck/ESI spectra from tel-
lurics by clipping the spectral bands of O2𝛾 + O4 (air wavelengths:
6,270-6,330 Å), O2B (6,860-6,965 Å), H2O (7,143-7,398 Å), O2A
(7,586-7,703 Å), and H2O (8,085-8,420 Å and 8,915-9,000 Å) (Bu-
ton et al. 2013). In addition to these processing steps, we also ad-
dressed a well-known limitation of atmosphere models for He-rich
WDs cooler than 𝑇eff≲16,000 K (as is the case for the five targets
in our sample) —namely, their inability to accurately reproduce the
broadening of He I lines caused by collisions with neutral particles,
such as He and H atoms (Bergeron et al. 2011; Genest-Beaulieu
& Bergeron 2019a; Cukanovaite et al. 2020; Saumon et al. 2022).
Given that our pipeline was trained on these atmosphere models,
any inaccuracies in the treatment of He I broadening could propa-
gate to cecilia’s predicted elemental abundances (since the amount
of metals in the WD affects the stellar electron density and photo-
spheric opacity, and hence the shapes of the spectral lines; Hollands
et al. 2017). Therefore, we sought to mitigate this issue with two
complimentary strategies:

(i) Clipping of prominent He I absorption lines: First, we re-
moved the strongest He I features from each spectrum. To
perform this task, we applied a symmetric clipping window
of 20 Å around the center of the lines, focusing on those at air
wavelengths 3,819 Å, 4,026 Å, 4,387 Å, 4,713 Å, 4,921 Å,
5,015 Å, 5,047 Å, 5,875 Å, 6,678 Å, 7,065 Å, and 7,281 Å
(Kramida et al. 2022). For the He I feature at 4,471 Å, we
used an asymmetrical window of 20 Å and 13 Å to the left

6 https://sites.astro.caltech.edu/~tb/makee/
7 https://www.eso.org/sci/observing/tools/standards/
spectra/stanlis.html
8 https://archive.stsci.edu/hlsps/reference-atlases/cdbs/
calspec/
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Figure 1. Median-normalised optical spectra of the five polluted WDs in our sample (left: SDSS with an assumed fixed resolving power of R=2,000 (in vacuum);
right: Keck/ESI with an assumed fixed R=4,500 in air). The stellar fluxes and their corresponding uncertainties are shown, respectively, in blue and red, while
cecilia’s best-fit models are presented in dark green. The data gaps correspond to the discarded wavelength regions described in Section 3.3, including the
strongest He I lines. The grey dashed vertical lines denote the 200 Å spectral windows used during cecilia’s training and optimisation routine.
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and to the right of the center, respectively, in order to preserve
a potential Mg absorption line near 4,481 Å. The final SDSS
and Keck/ESI observations used in our analysis are shown in
Figure 1.9

(ii) Fixed photometric values for 𝑇eff and log g: Second, we
froze the effective temperature and surface gravity of each
WD to their photometric solution during cecilia’s fitting
procedure (see Section 4.3). This decision was not only mo-
tivated by the unreliable nature of He-rich WD models below
𝑇eff≲16,000 K, but also by the strong effect of He I lines in
driving cecilia’s spectroscopic results for 𝑇eff and log g. In
particular, although we removed the strongest He I features
from our spectra, our clipping method did not eliminate the
full extent of their wings, allowing residual He I to affect
cecilia’s predictions. In addition to this leftover He I ab-
sorption, we also observed that prominent metal lines (e.g.
Ca II at about 3,934 Å and 3,969 Å) could similarly influence
the inferred values for 𝑇eff and log g. However, unlike the
He I lines, these metal features could not be removed without
losing important information about the WD’s elemental abun-
dances. Therefore, given that both residual He I absorption
and strong metal lines could bias cecilia’s spectroscopic
solution for 𝑇eff and log g, we adopted a more conservative
approach by fixing these two parameters to their photomet-
ric estimates. We note that we also explored leaving 𝑇eff and
log g free, but even with informative photometric priors based
on external fits to the stellar photometry, cecilia’s results
would still deviate significantly from their photometric solu-
tion. This behaviour further reinforced our decision to rely on
the fixed photometric values for 𝑇eff and log g in our optimi-
sation routine.

4 METHODOLOGY

In this Section, we describe our procedure for estimating the ele-
mental abundances of the five polluted WDs. First, we provide a
brief summary of cecilia and present several new functionalities
recently added to our code. We then discuss cecilia’s optimisation
procedure.

4.1 An Overview of cecilia

In recent years, ML has improved our ability to address complex
scientific problems, while also helping to reduce our dependence on
time-intensive and manual data analysis techniques. These advance-
ments have impacted all branches of astropyhsics, offering new ways
to exploit large astronomical datasets and learn about the fundamen-
tal properties of planets and stars. Despite this progress, however,
the complex spectral features of polluted WDs have not previously
been modeled with ML-based techniques. Therefore, we chose to de-
velop cecilia, the first ML system capable of measuring the main

9 In a few cases, we intentionally retained a small number of weaker He I
absorption lines when they were visible in some (but not all) the spectra,
especially if they were close to metal lines. This includes the He I absorption
feature at about 4,121 Å in Panel c of Figure 4, which is visible in some of the
Keck/ESI spectra, and is close to Fe I and O II transitions. For consistency, we
did not remove these weaker He I features when present, but we verified that
their inclusion had a negligible effect on cecilia’s final results, including
the best-fit elemental abundances.

astrophysical properties of He-rich polluted WDs from their spec-
tra. Implemented with the open-source ML package tensorflow10

(Abadi et al. 2015, 2016), and trained with MIT’s Satori Supercom-
puter and one NVidia V100 GPU,11 cecilia’s ML architecture is
composed of three unsupervised, multi-layered (i.e. “deep”) Neural
Networks (NN): an Autoencoder, a Fully Connected Neural Network
(FCNN1), and a Fine-Tuning Fully Connected Neural Network (FT
FCNN2).12 These networks use thousands of computational units
(or “neurons”) and non-linear “activation” functions to transform a
set of input features (WD properties) into useful output parameters
(a polluted WD spectrum).

To achieve a good balance between predictive accuracy and com-
putational efficiency, we trained cecilia sequentially using 29 win-
dows of 200 Å in the wavelength range between 3,000 Å and 9,000 Å.
Our training, validation, and testing sets involved more than 22,000
randomly generated synthetic WD properties (or “labels”), together
with their corresponding synthetic spectra (in air wavelengths). As
described in BA24, cecilia’s labels consist of 13 independently
varied parameters: the effective temperature 𝑇eff and surface gravity
log g of the WD; its logarithmic hydrogen abundance relative to He,
log10 (H/He); and 10 additional number abundances for Ca, Mg, Fe,
O, Si, Ti, Be, Cr, Mn, and Ni. We also incorporated 14 additional
elements (C, N, Li, Na, Al, P, S, Cl, Ar, K, Sc, V, Co, Cu) with their
calcium abundance ratio (Z/Ca) scaled to their CI chondritic abun-
dance from Lodders (2003). In addition to our choice of 13 stellar
labels, we trained cecilia with high-resolution (R≈50,000) syn-
thetic spectra featuring 55,000 points between 3,000 Å and 9,000 Å.
These models were generated with the atmosphere code of Dufour
et al. 2007; Blouin et al. 2018a,b, which is a local thermodynamic
equilibrium code that self-consistently considers H, He, and metallic
species in its equation of state and in the calculation of opacities.
Metal lines are included using the Vienna Atomic Line Database
(VALD; Piskunov et al. 1995; Kupka et al. 1999; Ryabchikova et al.
2015).

Once trained, cecilia exploits the speed of NN-based interpola-
tion to rapidly produce high-resolution model spectra in a fully au-
tonomous manner. For example, in the context of this work, cecilia
can predict a synthetic SDSS or Keck/ESI spectrum in 0.17-0.19 sec-
onds, with individual wavelength windows generated in less than 6
miliseconds on average. When factoring in additional computational
overheads (e.g. estimation of RV shifts), the total processing time per
spectrum reaches 0.35-0.37 seconds, including the evaluation of the
MCMC log-likelihood function. This efficiency makes cecilia sev-
eral orders of magnitude faster than conventional WD atmosphere
codes, which require one to three hours on a single CPU core to
produce an equivalent synthetic spectrum. As cecilia continues
to evolve, further refinements in its ML architecture could help im-
prove its speed, making it more efficient for large-scale WD spectral
analysis. We also note that cecilia’s interpolation time is largely
unaffected by variations in the input stellar labels (i.e. 𝑇eff , log g,
and elemental abundances). This stability is expected, as cecilia’s
architecture leverages the learned latent-space representations of its
training dataset, therefore bypassing the need for computationally
intensive radiative transfer calculations. A summary of cecilia’s

10 https://www.tensorflow.org/?hl=es
11 https://mit-satori.github.io/.
12 The Autoencoder has two components: an Encoder and a Decoder. To-
gether, they are used for data compression and dimensionality reduction. The
FCNNs are designed to produce a high-resolution synthetic spectrum from 13
stellar labels (i.e. 𝑇eff , log g, log10 (H/He) , and 10 metal abundances relative
to He).
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Figure 2. A summary of cecilia’s methodology for estimating the main astrophysical properties (or labels) of polluted He-rich WDs from multiple spectroscopic
observations. We refer the reader to Badenas-Agusti et al. (2024) for a more comprehensive description of the pipeline.

framework is presented below and in Figure 2. We refer the reader to
BA24 for a more detailed discussion of the pipeline.

(i) Stage 1: First, cecilia invokes its trained FT FCNN2 net-
work13 to produce a preliminary, high-resolution synthetic spec-
trum based on user-defined initial guesses for the 13 stellar labels
of the WD (i.e. 𝑇eff , log g, and 11 logarithmic elemental abun-
dances for H, Ca, Mg, Fe, O, Si, Ti, Be, Cr, Mn, and Ni). If
any of these labels are unknown (as would likely be the case for
a newly discovered polluted WD), cecilia assumes chondritic
abundance ratios except for H and Ca, for which it adopts their
mean abundance ratio from its training set as initial guesses. We
note that the assumption of chondritic abundance ratios is often
used to approximate the photospheric abundances of elements
when, for various reasons, these cannot be derived directly from
a WD spectrum (Dufour et al. 2007; Coutu et al. 2019). Although
several exceptions have been found —such as water-rich mate-
rial (Farihi et al. 2013; Raddi et al. 2015; Gentile Fusillo et al.
2017), or differentiated bodies with crustal and core-like com-
positions (Zuckerman et al. 2011; Jura & Xu 2012b; Harrison
et al. 2018)— this assumption is often used given the similarity
between the bulk composition of WD pollutants, and those of
bulk Earth and the CI chondrites (Allègre et al. 2001; Lodders
2003), especially for rock-forming elements like Ca, Mg, Fe, Si,
and O (Zuckerman et al. 2007; Xu et al. 2019; Doyle et al. 2023).

(ii) Stage 2: Second, cecilia implements several data processing
techinques to enable a meaningful comparison between its initial
prediction and the observed polluted WD spectrum. For example,

13 We note that cecilia only employs its FT FCNN2 architecture to generate
a spectral prediction. The Autoencoder and FCNN1 are only used during the
training stage to improve the overall learning accuracy of our pipeline.

it (i) denormalises its raw ML output; (ii) smears and resamples
its denormalised prediction to the the resolving power and wave-
length grid of the observed spectrum, respectively; (iii) applies a
radial velocity shift (or RV thereafter) to its prediction; and (iv)
employs a linear model (or alternatively, an 𝑛-th degree poly-
nomial as decided by the user) to correct the spectral “jumps”
arising from the training of cecilia in independent windows of
200 Å.

(iii) Stage 3: Finally, cecilia employs a combination of frequen-
tist and Bayesian statistical techniques to optimise its smeared,
downsampled, and slope-corrected ML prediction. In particular,
it incorporates two fitting routines: an optional and fast non-linear
least-squares Levenberg-Marquardt method implemented by the
Python mpfit14 library (Moré 1978; Markwardt 2009), and a
differential evolution Markov Chain Monte Carlo (MCMC) sam-
pler executed by the Python edmcmc package (Vanderburg 2021;
Ter Braak 2006). If the user runs mpfit, the resulting best-fit
parameters are fed into the MCMC as improved initial guesses.

For a given white dwarf, cecilia takes, on average, less than a
day to produce a complete spectroscopic solution using a single GPU.
Moreover, cecilia can be scaled to simultaneously process multiple
objects if additional GPUs are available, making it a valuable tool
in the era of large-scale astronomical surveys. The total execution
time is primarily dependent on the computational cost associated
to the ML-based spectral interpolation process, rather than on the
spectral resolution or S/N of the observations. As discussed in BA24,
cecilia’s retrieval accuracy can be ≲0.1 dex for up to 10 chemical
elements (H, Ca, Mg, Fe, O, Si, Ti, Be, Cr, Mn, and Ni), with Be

14 https://github.com/segasai/astrolibpy/blob/master/
mpfit/mpfit.py
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appearing the hardest element to constrain.15 This performance is
comparable to that of conventional techniques, which usually yield
uncertainties of about 0.10 dex-0.20 dex for He-dominated polluted
WDs, both in the UV and in the optical, as well as with different
types of WD atmosphere models (e.g. Doyle et al. 2023; Klein et al.
2021; Izquierdo et al. 2020; Raddi et al. 2015; Wilson et al. 2015;
Jura et al. 2012; Zuckerman et al. 2007).

Beyond cecilia’s predictive capabilities, our code differs from
conventional WD analysis techniques in two important ways. First,
it can quickly fit the spectra of polluted WDs without the need for
human supervision. This sets it apart from classical methods, which
can be slow and time-intensive due to their reliance on manual and
iterative fitting procedures. Second, cecilia provides a Bayesian
treatment of observational evidence and parameter uncertainties.
Through its MCMC, it maximises the log-likelihood function of
the free model parameters (ln(L)), while also incorporating the in-
formation encapsulated in the spectrum and any “prior” assumptions
about the properties of the star. This approach allows for a thorough
numerical exploration of the multidimensional parameter space of
the stellar labels, yielding full posterior probability distributions,
robust statistical errors, and insights into potential correlations be-
tween model parameters. These degeneracies are often visualised
in scatterplot matrices, or “corner plots,” which provide the two-
dimensional marginal posterior of a pair of labels alongside their re-
spective one-dimensional histogram distributions (e.g. see Figure 4).
Finally, cecilia fits the entire spectrum simultaneously to deter-
mine the 13 stellar labels of the WD. This differs from some classi-
cal methods designed to calculate average abundance measurements
based on individual, line-by-line fits to visible absorption lines.16

4.2 cecilia’s Improved Capabilities

In this paper, we present an improved version of cecilia’s optimi-
sation procedure (see Figure 2). To begin with, we have modified the
MCMC to sample the elemental abundances in linear space. This is
different to the pipeline presented in BA24, where logarithmic abun-
dances were used to map out the likelihood distribution of the model
parameters. To implement this change, we have updated cecilia to:
(i) adjust the allowed parameter bounds to linear values (see Table
1 in BA24); (ii) convert the user’s initial abundance guesses from
log to linear space; and (iii) impose a lower bound of zero on all
abundances (representing the complete absence of an element in
the atmosphere of the WD). A practical motivation for this switch
is that sampling in linear space allows the MCMC to explore very
low abundance values and still achieve convergence. This is different
from our previous log-abundance approach, which could cause the
MCMC to diverge towards negative infinity in the case of weak or
non-detections. Another advantage of our new approach is that it
opens the door to computing statistically robust upper limits on the
abundances of the undetected elements. However, we do not attempt
to calculate these limits in this work due to computational limita-
tions related to the sparseness of cecilia’s training set at very low
abundance values.17

15 cecilia’s performance is discussed in more detail in Section 5 of BA24,
based on an analysis of synthetic and real spectroscopic observations.
16 We note that other conventional (i.e. non-AI-based) methods are also capa-
ble of fitting the entire spectrum simultaneously. For instance, Bhattacharjee
et al. 2025 recently employed a least-squares minimisation approach to model
the spectra of DAZ and DBZ white dwarfs.
17 We note that our new parametrisation modifies the implicit prior used in
our sampling. Indeed, sampling uniformly in logarithmic space (as done in

In addition to sampling the elemental abundances in linear space,
we have also implemented two important changes to cecilia’s log-
likelihood function. First, we have modified our code to allow for
a simultaneous fitting of 𝑁spec spectra from multiple instrumental
facilities —regardless of their intrinsic characteristics (e.g. resolving
power, S/N). Second, we have introduced a jitter term 𝐴𝑠

jit (where
𝑠 denotes the instrument that acquired the spectrum) to account for
unknown sources of noise in the data and in the atmosphere models
used to train cecilia. The jitter parameter employs the observed
scatter in the spectrum to estimate what the uncertainties of the stellar
flux should be, lowering or increasing them accordingly if necessary
(Ford 2006). Therefore, it regulates the contribution of each spectrum
to the final solution and allows cecilia to robustly fit multiple
spectra simultaneously, even if some datasets are significantly poorer
than the rest. Ideally, the jitter term should be close to 1 when the flux
errors are well estimated prior to initiating cecilia’s optimisation
routine. As an additional diagnostic metric, our code also computes
the reduced chi-squared (𝜒2

reduced) for the best-fit solution associated
to each spectrum, with the expectation that 𝜒2

reduced ≈ 1 when all the
observations have contributed similarly to the best-fit solution.

With all the aforementioned changes, cecilia’s new log-
likelihood MCMC function is given by Eq. 1, where 𝑓

𝑠,𝑖

synth,corr
denotes cecilia’s prediction for pixel 𝑖 from instrument 𝑠 (after
denormalisation, resampling, resolution downgrading, RV-shifting,
and slope correction). The terms 𝑓

𝑠,𝑖

obs and 𝑓
𝑠,𝑖

obs,err represent the
observed stellar flux and its corresponding error, while the priors
𝜋0,phot (𝑇eff , log 𝑔) and 𝜋0,chondr (𝑋𝑘) are optional contributions to
cecilia’s spectral model, applied to the parameters 𝑇eff and log g,
and to the elemental abundances 𝑋𝑘 , respectively. The photometric
priors may be used when 𝑇eff and log 𝑔 are treated as free model
parameters and have reliable external constraints (e.g., from existing
photometry).18 The chondritic priors, in turn, are designed to limit
cecilia’s exploration of the parameter space and help with MCMC
chain convergence.

lnℒ = −1
2
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𝜋0,phot (𝑇eff , log 𝑔) +
𝑁elem∑︁
𝑘=1

𝜋0,chondr (𝑋𝑘)
}

(1)

In general, the influence of a chondritic prior on an elemental abun-
dance is determined by its inverse variance, 1/𝜎2

prior,chondr, where
𝜎prior,chondr denotes the standard deviation (or width) of the prior dis-
tribution 𝜋0,chondr. Assuming that both the prior and the likelihood
are Gaussian, the posterior uncertainty, 𝜎post, is given by

BA24) corresponds to an implicit prior proportional to 1/𝑥 in linear space,
which favours smaller abundance values. In contrast, our new approach sam-
ples uniformly in linear space, which corresponds to an implicit prior that
increases exponentially with log 𝑥 and favours higher abundances. This dis-
tinction is only important when the data provide weak or no constraints on
the elemental abundances. Indeed, when the observations are sufficiently in-
formative, the posterior is dominated by the likelihood and the influence of
the prior becomes negligible.
18 The current implementation of cecilia does not predict 𝑇eff and log 𝑔
from photometric observations. Therefore, our code assumes that the user
has reasonably good constraints on these two parameters from external pho-
tometric fits.

MNRAS 000, 1–20 (2025)



Compositions of Five White Dwarf Pollutants 9

1
𝜎2

post
=

1
𝜎2

obs
+ 1
𝜎2

prior,chondr
, (2)

where 𝜎obs represents the observational uncertainty. For elements
that are typically easy to detect (e.g., Ca, Mg, Si), we recommend
adopting broad chondritic priors (i.e., a large 𝜎prior,chondr) so that
1/𝜎2

prior,chondr is very small compared to 1/𝜎2
obs and 𝜎post ≈ 𝜎obs.

This approach minimises the effect of the prior and ensures that
the posterior uncertainty is dominated by the observations. In con-
trast, for elements that are hard to detect, we suggest using narrower
chondritic priors (i.e., a small 𝜎prior,chondr) to facilitate MCMC con-
vergence; in these cases, if an element is undetected, we recommend
not reporting its predicted cecilia abundance. In this work, we
discuss our choice of prior widths in Section 4.3 and Table 2.

4.3 Estimation of White Dwarf Elemental Abundances

We measured the elemental abundances of the five polluted WDs by
performing a joint MCMC fit to their Keck/ESI and SDSS spectra.
Our ceciliaMCMC model consisted of 17 parameters, namely: the
13 stellar labels underlying cecilia’s training set (i.e. 𝑇eff , log g,
and the logarithmic abundances of H, Ca, Mg, Fe, O, Si, Ti, Be, Cr,
Mn, and Ni relative to He); 2 jitter terms (Ajit,SDSS, Ajit,Keck/ESI);
and 2 RV shifts (RVSDSS, RVKeck/ESI).19 As described in Section
3.3, we decided to freeze 𝑇eff and log g to their photometric solution,
and only fitted the remaining 15 parameters.

To prepare our initial guesses, we adopted the 𝑇eff , log g, H,
and Ca results of Coutu et al. (2019; C19), whenever possible.20

There were two systems, however, lacking C19 measurements:
SDSS J0231+2512 and SDSS J1109+1318. For the former, we
took as initial guesses the 𝑇eff and log g values derived from a fit
to Pan-STARRS photometry (see the “MWDD He” column in the
MWDD), and the H and Ca results from Koester & Kepler (2015).
For SDSS J1109+1318, we used the 𝑇eff and log g photometric so-
lution of Genest-Beaulieu & Bergeron (2019b), and the H and Ca
abundances of Koester & Kepler (2015). Then, for the remaining
(and unknown) elemental abundances, we assumed chondritic abun-
dances relative to our initial guess for Ca. Finally, we set the jitter
terms to 1 (dimensionless) and the RV shifts to 0 km/s.

After building our spectral model, we executed cecilia’s MCMC
twice per WD, using the log-likelihood in Eq. 1 and a linear function
to minimise the spectral jumps between training windows of 200 Å.
Our MCMC hyperparameters consisted of 𝑛walkers=50 walkers (or
chains), 𝑛draws=3000 draws (number of steps per chain), and a 20%
“burn-in” phase aimed at removing non-stationary solutions (i.e.
𝑛burn = 0.2𝑛draws=600 draws).21 Similarly to BA24, we initialised
the positions of the walkers using Gaussian balls with standard devi-
ations of 0.01 dex for the elemental abundances, 1 km/s for the two
RV shifts, and 0.01 for the jitter terms. We then imposed priors on

19 Although we would expect the RV of a WD to remain consistent across
its spectra, we considered separate RV shifts for each dataset to account for
known systematic offsets in our calibrations arising from different observa-
tional set-ups, instrumental effects, etc. As explained in the text, we do not
report or provide a physical interpretation of our best-fit RV results; instead,
we only treat them as nuisance parameters in our model.
20 In C19, the authors studied 1,023 DBZ/DZ(A) WDs with the same atmo-
sphere code used to generate cecilia’s training set; therefore, their results
represent the most self-consistent initial guesses for our Bayesian analysis.
21 The use of multiple walkers (or chains) ensures extensive sampling of the
parameter space. Over time, the cumulative distribution of the walkers and
draws should approach the final posterior distribution.

Table 2. Adopted prior distributions for cecilia’s model parameters (see
Section 4.3). The symbols T and U denote truncated Gaussian and uniform
priors, respectively. Where applicable, the mean 𝜇 represents the offset be-
tween the chondritic abundance of element 𝑋 and that of calcium, defined
as 𝜇 = log(Ca/He) − log(𝑋/He) based on the chondritic values of Lod-
ders (2003). The standard deviation 𝜎 specifies the width of the truncated
Gaussian distribution. The bounds of the elemental abundances are given in
logarithmic base 10.

Parameter Prior Min. Max. Mean (𝜇) Width (𝜎)

𝑇eff [K] No Prior Used – Fixed Parameter
log g [cgs] No Prior Used – Fixed Parameter
log10 (H/He) [dex] T -7.00 -3.00 -1.96 2
log10 (Be/He) [dex] T -23.85 -5.61 4.91 0.5
log10 (O/He) [dex] T -17.46 1.25 -2.10 2
log10 (Mg/He) [dex] T -16.89 -0.17 -1.24 2
log10 (Si/He) [dex] T -17.42 -0.51 -1.22 2
log10 (Ca/He) [dex] U -12.00 -7.00 – –
log10 (Ti/He) [dex] T -19.35 -2.32 1.40 0.5
log10 (Cr/He) [dex] T -19.61 -1.71 0.66 0.5
log10 (Mn/He) [dex] T -20.08 -1.65 0.82 0.5
log10 (Fe/He) [dex] T -18.20 0.18 -1.16 2
log10 (Ni/He) [dex] T -18.96 -1.66 0.10 0.5
RVSDSS [km/s] U -500 500 – –
RVKeck/ESI [km/s] U -500 500 – –
Ajit,SDSS [-] U 0 +∞ – –
Ajit,Keck/ESI [-] U 0 +∞ – –

our free model parameters to limit cecilia’s exploration of the pa-
rameter space and facilitate MCMC chain convergence. In particular,
we applied uniform priors to the Ca abundance, the RV shifts, and
the jitter terms, allowing their values to vary within the bounds de-
fined by cecilia’s training set. For all other elemental abundances,
we adopted truncated Gaussian priors informed by the chondritic
abundances of Lodders (2003). To do this, we set the mean of each
distribution to the difference between the element’s chondritic abun-
dance and that of calcium. We then applied narrow widths of 0.5 dex
for elements that are typically hard to detect (Ti, Be, Cr, Mn, Ni),
and broader widths of 2 dex to more commonly observed elements
(H, Mg, Fe, O, Si). A summary of our priors is presented in Table 2.

For our first MCMC, we fitted all model parameters except 𝑇eff
and log g, which we froze to our initial guesses. We then recycled
cecilia’s best-fit results to run a second MCMC with improved
values for 𝑇eff and log g (see Tables 1-3). To refine these two pa-
rameters, we fitted the SDSS and Pan-STARRS photometry of each
star following the procedure of C19, but correcting it for interstel-
lar extinction using the stilism reddening models.22 Our cecilia
MCMC analysis took between 12.26 hr (SDSS J1109+1318) and
22.68 hr (SDSS J0859+5732) to complete. We then assessed MCMC
chain convergence by computing the Gelman-Rubin potential scale
reduction factor �̂� for each free model parameter and ensuring that
it satisfied �̂� < 1.02 (Gelman & Rubin 1992; Gelman et al. 2004).

Upon concluding our fits, we considered an element to be detected

22 https://stilism.obspm.fr/. For WDs located beyond d⪆100 pc, it
is important to account for interstellar extinction by de-reddening the pho-
tometry with 3D dust maps (Coutu et al. 2019; Genest-Beaulieu & Bergeron
2019a; Gentile Fusillo et al. 2019).
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if its elemental abundance had a statistical (i.e. MCMC) uncertaintiy
lower than than or equal to an assumed detectability threshold of
𝜎detection = 0.10 dex. We also validated this cut-off empirically by
confirming the presence of its absorption feature(s) by eye. Then,
for each detected element, we used cecilia’s predicted abundance
to estimate its mass ratio relative to He (𝑅ratio,Z; Eq. 3), its mass
in the stellar atmosphere (𝑀Z; Eq. 4), and its accretion rate ( ¤𝑀Z;
Eq. 5), together with their 1𝜎 errors from their 16th, 50th, and 84th
quantiles of their MCMC posterior distributions. More specifically,
we first calculated the mass ratio of a given metal 𝑍 with

𝑅ratio,Z = 𝑛Z · 𝑢Z
𝑢He

. (3)

where 𝑢Z represents the atomic mass of the metal, 𝑢He is the atomic
mass of He (i.e. 𝑢He = 4 atomic mass units, or amu), and 𝑛Z
is the metal elemental abundance in linear space (as measured by
cecilia). Second, we determined the mass of a given metal (𝑀Z)
by invoking the mass of the stellar Convection Zone (𝑀cvz). In He-
atmosphere WDs, CVZs tend to be very large (Koester 2009) and
can therefore be used as a proxy for the total mass of He in the
atmosphere,

𝑀Z = 𝑀cvz · 𝑅ratio,Z. (4)

To estimate 𝑀cvz, we employed the evolutionary models of Bé-
dard et al. (2020) using our improved photometric solution for 𝑇eff
and log g.23 We then inferred the accretion rate of each detected
metal ( ¤𝑀Z) by taking the ratio of its total mass (𝑀Z) to its gravita-
tional sinking timescale (𝜏Z), where 𝜏Z was obtained from the public
diffusion models of the MWDD,24

¤𝑀Z =
𝑀Z
𝜏Z

. (5)

Finally, for each WD in our sample, we computed a lower limit
on the total metal accretion rate (

∑ ¤𝑀Z), along iwth the total mass
of metals in the atmosphere (

∑
𝑀𝑍 ). From the latter, we derived

the fractional mass contribution of each element (MFZ) using Eq. 6.
For this calculation, we considered the 10 metals fitted by cecilia,
with the best-fit masses of the undetected elements constrained via
our chondritic abundance priors.

MFZ =
MZ∑
MZ

. (6)

4.4 Estimation of Pollutants’ Elemental Abundances

The photospheric abundances of a WD can be used to probe the bulk
composition of its pollutant through a set of well-known WD accre-
tion and diffusion equations (Dupuis et al. 1992, 1993a,b; Koester
2009). Assuming a constant accretion rate and the engulfment of a
single pollutant,25 we evaluated these equations for three different

23 The models of Bédard et al. (2020) are publicly available
in the MWDD (https://www.montrealwhitedwarfdatabase.org/
evolution.html).
24 Eq. 5 quantifies the rate at which metals diffuse out of the convective
layer, and it only corresponds to the true accretion rate under the assumption
of steady-state equilibrium, that is, when the influx of metals is balanced
by their diffusion in the CVZ. As discussed in Section 5, it is likely that
our targets are in the build-up or steady-state phase, which makes Eq. 5 a
reasonable approximation.
25 Previous work has investigated the accretion of multiple bodies (e.g. small
asteroids) with different bulk compositions (e.g. Jura 2008; Wyatt et al. 2014;
Turner & Wyatt 2019; Trierweiler et al. 2022). However, for simplicity, we
assume that our WDs accreted a single large object.

phases. First, there is a “build-up” (or “increasing”) phase, when the
polluting body has just begun to accrete onto the WD’s photosphere.
During this stage, the number abundance ratios 𝑛A and 𝑛B of the
pollutant for two different metals 𝐴 and 𝐵 are assumed to correspond
to the elemental abundances in the atmosphere of the WD,(
𝑛A
𝑛B

)
P
=

(
𝑛A
𝑛B

)
WD

, (7)

where the subscript “WD” alludes to the observed number abun-
dances in the star —in our case, obtained from cecilia (see Table
3)— and “P” refers to the inferred composition of the polluting body.
After the increasing phase, there is “steady-state” phase, when the
effects of accretion and diffusion are (almost) in balance in the con-
vective layer. During this period, the number abundance ratios of the
pollutant are assumed to match those of the star when corrected by
their respective diffusion timescales,(
𝑛A
𝑛B

)
P
=

(
𝑛A
𝑛B

· 𝜏B
𝜏A

)
WD

. (8)

The last phase of accretion is known as the “declining” (or “de-
creasing”) phase, when the polluting material is no longer replenished
in the stellar photosphere and sinks donwards into the interior, hence
disappearing from view. During this phase, lightweight elements (i.e.
H and He) remain in the outermost layers of the WD, while heavier
elements rapidly sink below the photosphere. If 𝑡 is the time elapsed
since the end of accretion, the ratio of heavy elements in the pol-
luting body can be inferred from the stellar abundance ratios after
introducing an exponential decay term,(
𝑛A
𝑛B

)
P
=

(
𝑛A
𝑛B

· 𝑒
−𝑡/𝜏B

𝑒−𝑡/𝜏A

)
WD

. (9)

5 RESULTS

5.1 Bayesian Spectral Modelling with cecilia

The results of cecilia’s MCMCs are summarised in Table 3,
together with their corresponding total uncertainties (𝜎tot). For
each free model parameter, we assumed Gaussian and uncorrelated
noise to approximate 𝜎tot as the quadrature sum of its statistical
(𝜎stat,MCMC) and systematic error (𝜎sys,ML). The former are directly
obtained from the 1𝜎 confidence intervals of our MCMC and en-
capsulate the errors of the observations. In contrast, the latter arise
from inaccuracies in cecilia’s ML predictions as well as from in-
herent imperfections in the WD atmosphere models used to train
its networks. To ensure that cecilia’s uncertainties would not be
greatly underestimated for our abundance parameters, we followed
the methodology of BA24 and replaced their total error 𝜎tot by a
conservative noise floor of 𝜎floor = 0.20 dex whenever 𝜎tot< 𝜎floor.

The full spectroscopic solutions of cecilia’s optimisation rou-
tine are illustrated in Figure 1. In Figure 3 and Figures A1-A4, we
provide zoomed-in panels of the Keck/ESI best-fit models across
different wavelength ranges. To visualise the quality of the model
uncertainties, we also show cecilia’s predictions when modifying
the abundances of the detected elements by a factor of ±1𝜎tot. We
note that cecilia’s detections are primarily enabled by the quality
of the Keck/ESI observations. The SDSS spectra are especially help-
ful for the analysis of the Ca II H&K region between 3,930 Å and
3,970 Å, where the Keck/ESI spectrograph has very limited sensitiv-
ity. However, they are too noisy elsewhere to contribute significantly
to cecilia’s detections. Finally, Figure 4 and Figures A5-A8 in the
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Figure 3. A selection of spectral windows showing cecilia’s best-fit RV-shifted MCMC model (in green) for the median-normalised Keck/ESI spectrum of
SDSS J0859+5732 (in light blue; in air wavelengths). For reference, we also include cecilia’s predictions when modifying the abundances of the detected
elements by ±1𝜎tot (red and orange). The green labels show all the detected elements, defined as those with 𝜎stat,MCMC≤𝜎detection = 0.10 dex and at least one
visible absorption line in the spectrum. We note that cecilia struggles to model the depth of the Mg line at about 4,481 Å (see panel d). This is not the case for
other Mg lines, which are fitted reasonably well by our code (e.g. panels g and j). Such behaviour may be an example of underestimated errors due to the high
level of red (i.e. correlated) noise in panel d. In Section 6.2, we discuss how cecilia can be improved to address this problem.
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Table 3. cecilia’s best-fit parameters for the five polluted WDs in our sample, obtained from a joint MCMC fit to their SDSS and Keck/ESI spectra. For clarity,
we only report the abundances of the detected elements, as cecilia’s results for the remaining chemical species are dominated by our choice of chondritic
priors. For each detection, we provide three sources of uncertainty: the statistical errors from cecilia’s MCMC (𝜎stat,MCMC; left parenthesis), the systematic
errors caused by imperfections in cecilia’s ML interpolation and our training models (𝜎sys,ML; center), and the total uncertainties (𝜎tot; right), with the latter
computed as the quadrature sum of 𝜎stat,MCMC and 𝜎sys,ML. In all cases, 𝜎tot is consistently below our assumed noise floor (𝜎floor = 0.20 dex), so we follow
the methodology of BA24 and enforce 𝜎tot= 𝜎floor. In this Table, we denote cecilia’s fixed model parameters with a dagger (†). We also exclude our results
for the RVSDSS and RVKeck/ESI terms, as cecilia does not account for the stellar barycentric motion and gravitational redshift during its fitting procedure.

Parameter SDSS J0231+2512 SDSS J0859+5732 SDSS J1109+1318 SDSS J1333+6364 SDSS J2311−0041

𝑇eff
† [K] 12620±503 12677±722 15112±1688 14762±1340 12023±544

log g† [cgs] 7.76+0.14
−0.13 7.95+0.16

−0.15 8.09+0.20
−0.19 7.95+0.14

−0.13 8.07+0.10
−0.09

log10 (H/He) [dex] – -6.60+0.08
−0.09(±0.04)(±0.20) -4.33+0.03

−0.04(±0.02)(±0.20) -5.49+0.05
−0.05(±0.03)(±0.20) -6.26+0.07

−0.09(±0.04)(±0.20)

log10 (O/He) [dex] – -5.35+0.03
−0.03(±0.12)(±0.20) -5.66+0.06

−0.06(±0.13)(±0.20) -5.85+0.08
−0.08(±0.13)(±0.20) -5.64+0.04

−0.04(±0.13)(±0.20)

log10 (Mg/He) [dex] –7.22+0.06
−0.07(±0.08)(±0.20) -6.24+0.02

−0.03(±0.07)(±0.20) -6.46+0.05
−0.05(±0.07)(±0.20) -6.54+0.07

−0.09(±0.07)(±0.20) -6.57+0.02
−0.02(±0.07)(±0.20)

log10 (Si/He) [dex] – -6.48+0.03
−0.03(±0.08)(±0.20) -6.72+0.06

−0.06(±0.09)(±0.20) – -6.78+0.07
−0.08(±0.09)(±0.20)

log10 (Ca/He) [dex] -8.58+0.08
−0.08(±0.09)(±0.20) -7.86+0.04

−0.04(±0.09)(±0.20) -7.34+0.07
−0.08(±0.09)(±0.20) -7.78+0.06

−0.06(±0.09)(±0.20) -7.94+0.03
−0.03(±0.09)(±0.20)

log10 (Fe/He) [dex] – -6.66+0.04
−0.05(±0.07)(±0.20) – – -7.09+0.09

−0.11(±0.08)(±0.20)

Ajit,SDSS [–] 1.00±0.01 0.97±0.01 1.08±0.01 0.92±0.01 0.98±0.01

Ajit,Keck/ESI [–] 1.25±0.01 1.44±0.01 1.09±0.01 1.08±0.01 1.11±0.01

Detections [no.] 2 total (2 metals) 6 total (5 metals) 5 total (4 metals) 4 total (3 metals) 6 total (5 metals)

Appendix provide the corner plots of cecilia’s fits, demonstrating
the convergence of our MCMCs and the lack of strong correlations
between cecilia’s free model parameters.

From cecilia’s results, we can confidently identify a total of 2,
6, 5, 4, and 6 elements in the atmospheres of our targets (Table 3).
In particular, we detect traces of Ca and Mg in SDSS J0231+2512;
H, O, Mg, Si, Ca, and Fe in SDSS J0859+5732; H, O, Mg, Si, and
Ca in SDSS J1109+1318; H, O, Mg, and Ca in SDSS J1333+6364;
and H, O, Mg, Si, Ca, and Fe in SDSS J2311−0041. As discussed
in Section 4.3, we consider these chemical species to be positive
detections because their MCMC errors fall below our detectability
cut-off (i.e. 𝜎stat,MCMC<𝜎detection = 0.10 dex) and they all have
at least one clear absorption line in the spectra. The most polluted
WDs in our sample —defined as those with the largest number of
detected elements— are SDSS J0859+5732 and SDSS J2311−0041,
likely due to a combination of high accretion rates (see Table B1 and
below) and relatively low effective temperatures. At lower 𝑇eff , the
photospheres of WDs tend to be less opaque, which would make it
easier for cecilia to detect metal pollution.

Given that this paper represents the first application of cecilia
to the study of polluted WDs with no well-measured abundances, we
chose to validate our results by fitting the spectra of our targets with
the classical method of Dufour et al. 2012 (DF12). This comparison
yielded consistent abundances within 0.2 dex, which is roughly the
scatter we would expect due to methodological differences in the
two fitting approaches (see Section 4.1). More specifically, DF12
adopt a line-by-line 𝜒2 minimisation approach, which effectively
gives the same weight to each visible absorption feature. This differs
from cecilia’s approach, which fits the full spectra simultaneously,

assigning different weights to the lines based on their observational
characteristics (e.g. line widths and strength, S/N).

5.2 Properties of Detected Metals

For all five WDs, we implemented the methodology described in
Section 4.3 to estimate the mass ratio (𝑅ratio,Z; Eq. 3), atmospheric
mass (𝑀Z; Eq. 4), and accretion rate ( ¤𝑀Z; Eq. 5) of cecilia’s
detected metals. Our results are summarised in Table B1, together
with lower limits on the total metal mass (

∑
𝑀Z) and total accretion

rate (
∑ ¤𝑀Z) of each system. For reference, we also include the log-

arithmic metal diffusion timescales (log10 𝜏Z) and the masses of the
stellar convective layers (𝑀cvz) obtained from the MWDD.

Next, we used the equations presented in Section 4.4 to infer the
metal abundances of the WD pollutants. To this end, we focused
on the build-up and steady-state phases of accretion, which yielded
results more consistent with the enguflment of rocky exoplanetary
debris than the decaying phase. For our calculations, we normalised
cecilia’s best-fit abundances by Mg, that is, we set 𝑛B= 𝑛Mg and
𝜏B= 𝜏Mg in Eq. 7-8. In Table B1, we provide our normalised abun-
dance measurements (𝑛Z/𝑛Mg) for cecilia’s detected elements.
From these results, we also derived their corresponding percent mass
fractions (MFZ; Eq. 6). Figure 5 illustrates our estimated abundances
and MFs, together with those of bulk Earth (Allègre et al. 2001), the
CI chondrites (Alexander 2019a,b), and comet Halley (Jessberger
et al. 1988).

Considering the full range of abundance ratios, the compositions of
the polluting bodies accreting onto the five WDs are largely consistent
with those of CI chondrites to within 1-2𝜎tot. For SDSS J0859+5732
and SDSS J1109+1318, their Ca/Mg ratios appear slightly lower
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Figure 4. MCMC corner plot for SDSS J0859+5732. The off-diagonal plots illustrate the two-dimensional marginalised posterior distributions of the free model
parameters, while the histogram panels along the diagonal show their one-dimensional marginalised distributions together with their median value and 1𝜎
confidence interval. This Figure does not show our results for cecilia’s undetected elements. It also excludes the RV shifts because cecilia does not correct
for the barycentric motion and gravitational redshift of the white dwarf.

and higher, respectively, than those of these primitive meteorites,
although they are still consistent within 2𝜎tot. We also find that
the O/Mg abundances of the four white dwarfs with oxygen detec-
tions (SDSS J0859+5732, SDSS J1109+1318, SDSS J1333+6364,
SDSS J2311−0041) are enhanced in comparison to that of rocky,
bulk Earth-like material. From these results, we calculated the oxy-
gen excess by assessing how much oxygen binds with the major
elements in the accreted material.

The concept of oxygen excess, first introduced by Klein et al.
(2010), refers to the number of oxygen atoms that remain un-
accounted for after calculating the amount of oxygen needed to
form common rock-forming oxides (CaO, SiO2, FeO, MgO). In this
work, we investigated this phenomenon for SDSS J0859+5732 and
SDSS J2311−0041, which exhibit the four main rock-forming ele-
ments in their spectra (O, Fe, Si, Mg). Assuming steady-state accre-
tion and that iron is in the form of FeO, we followed the methodology
of Rogers et al. (2024b) to quantify the oxygen excess and its sig-

nificance. In particular, we employed Monte Carlo techniques to
sample plausible oyxgen excess values given our assumed total er-
ror on cecilia’s predicted abundances. Our analysis indicates that
SDSS J0859+5732 and SDSS J2311−0041 have oxygen excesses of
0.64+0.13

−0.25 and 0.68+0.12
−0.23, respectively. Accounting for the asymme-

try of the Monte Carlo sampled values, we calculated the fraction of
sampled values showing a positive oxygen excess, obtaining 95.5%
and 96.4% for SDSS J0859+5732 and SDSS J2311−0041, respec-
tively. Comparing these probabilities to the 2𝜎 significance threshold
of Brouwers et al. 2022 (equivalent to 95.45% confidence),26 we find

26 As discussed in Brouwers et al. (2022), the use of 2𝜎 confidence threshold
is a conservative trade-off between minimising false positives (which would
become abundant at the 1𝜎 level), and the limitations imposed by errors in
the stellar abundances and accretion rates (which would make the 3𝜎 very
restrictive). Our methodology follows the same conservative approach, but
assumes a steady-state accretion model.
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Figure 5. Compositional properties of the WD pollutants during build-up, steady-state, and decaying phase (first, second, and third columns, respectively). The
top panels show the Mg-normalised linear abundance ratios of the accreted material relative to those of CI chondrites (red line; Alexander 2019a,b). The bottom
panels present the percent metal mass fractions for systems with simultaneous detections of at least the four major rock-forming elements (O, Fe, Si, Mg), with
Ca values scaled by a factor of 10 for clarity. In each plot, we only include cecilia’s detected elements (excluding Mg, our reference metal), with error bars
reflecting a total assumed abundance error of 𝜎tot=𝜎floor = 0.20 dex (see Table 3). For comparison, we also show the properties of bulk Earth (black ‘⊕’ marker;
Allègre et al. 2001), comet Halley (black ‘^’ marker; Jessberger et al. 1988), and CI chondrites (black ‘+’ marker, bottom panels only). Heavy elements are
sorted by increasing condensation temperature 𝑇cond (Lodders 2003).

that both targets have statistically significant oxygen excesses. Our
results are also similar to those reported by Brouwers et al. (2022)
for GALEXJ2339 (0.61, using data from Klein et al. 2021), and
WD1232+563 (0.57, using data from Xu et al. 2019), where H2O
is considered the most likely carrier of excess oxygen. It should be
noted that the derived H abundances for SDSS J0859+5732 and
SDSS J2311−0041 are too low to account for the oxygen excess, so it
is likely additional oxygen carriers, such as carbon-bearing species,
would be required to explain the observed stellar abundances.

Based on cecilia’s metal detections, our work suggests that
the total metallic mass content of the WD pollutants ranges from
5.43 × 1021 g (for SDSS J0231+2512) to 1.92 × 1023 g (for
SDSS J0859+5732) —in agreement with previous studies of metal
pollution (e.g. Zuckerman et al. 2010; Farihi 2016; Xu et al. 2019).

At the lower end, our inferred mass is comparable to that of a small-
or medium-sized asteroid in the Solar System. For example, 52 Eu-
ropa has a mass of approximately 2.4 × 1022 g, slightly above our
lower bound. At the upper end, our result is comparable to the ac-
cretion of a much larger body, similar to Saturn’s icy moon Ence-
ladus (1.08 × 1023 g; Jacobson 2022), or the large asteroids Vesta
(2.5× 1023 g; Russell 2012) and Pallas (2.05× 1023 g; Carry 2012).
Assuming a typical density of 2.2 g/cm3 for CI chondrites (Britt &
Consolmagno 2004), the total accreted masses derived in this work
would result in a single pollutant with diameters between approxi-
mately 170-550 km. Lastly, in terms of total accretion rate, our results
range between 107 − 109 g/s, which is consistent with the observed
distribution for He-atmosphere polluted WDs with similar effective
temperatures (Rogers et al. 2024a).
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6 DISCUSSION

6.1 Limitations and Insights of Compositional Analysis

Our geological inferences are inherently limited by the number of de-
tected metals in the WDs and our conservative noise floor of 0.20 dex
on the stellar abundances. Another limitation is that these systems
are too faint to be observed with current UV facilities —which would
typically allow for the detection of more elements, including volatiles
such as C, N, or P—, so our conclusions are restricted to the opti-
cal spectra considered in this work. Recognising these observational
caveats, the five WDs in our sample appear to be accreting rocky ex-
trasolar material with a composition similar to those of CI chondrites.
These results should be interpreted with caution, as the absence of
major detected elements like Fe, Si, and Al introduces uncertainties
in our calculations, especially when assuming chondritic values for
some of the primary rock-forming elements. In particular, Fe and Si
are critical for the formation of planetary mantles and cores, so their
absence in some WDs limits our ability to make reliable assumptions
about the geochemistry and internal structure of the accreted debris.

With respect to SDSS J0859+5732 and SDSS J2311−0041, both
systems show enhanced oyxgen levels compared to bulk Earth, with
significant oxygen excesses (> 2𝜎) pointing to the accretion of
oxygen-rich exoplanetary material. An important caveat is that the
assumed oxidation state of Fe can influence the magnitude of the
inferred oxygen excess, as Fe could be in the form of metallic Fe,
FeO, or Fe2O3. If the Fe were instead fully or partially in metallic
form, the inferred oxygen excess would increase; conversely, if all
Fe were assumed to be present as Fe2O3, the resulting oxygen ex-
cesses would be 0.60+0.14

−0.28 for SDSS J0859+5732 and 0.65+0.13
−0.25 and

SDSS J2311−0041. In these cases, 94.1% and 95.6% of the Monte
Carlo samples lie above zero, indicating a positive oxygen excess.
When compared to the 2𝜎 significance threshold of Brouwers et al.
2022 (corresponding to 95.45% confidence), the oxygen excess in
SDSS J2311−0041 would remain statistically significant, while the
result for SDSS J0859+5732 would fall just below the threshold,
offering tentative evidence for an oxygen excess even under this con-
servative oxidation scenario. Another potential source of uncertainty
in our oxygen excess calculations is the phase of accretion, with
build-up making the excess more pronounced, and declining making
it less significant. The detection of infrared flux excesses would offer
independent evidence of ongoing accretion (Bonsor et al. 2017), but
none of our targets have existing WISE and Spitzer photometry to
support this hypothesis. Despite this limitation, the predicted abun-
dances of the polluting bodies resemble those of rocky material from
the Solar System assuming build-up or steady-state accretion, which
would make it unlikely that these WDs are accreting in the declin-
ing phase. Furthermore, SDSS J0859+5732 and SDSS J2311−0041
retain their oxygen excess up to 4.8 and 5 times the Mg sinking
timescale into the declining phase, respectively. At these times, the
abundance patterns of their accreted material deviate significantly
from those of known rocky Solar System bodies (see Figure 5 and
Figure A9), which would further support our interpretation that these
systems are not in the declining phase and that their oxygen excesses
are real. Therefore, our results add two more WDs to the growing
smaple of systems with notable oxygen excesses (Farihi et al. 2011,
2013; Raddi et al. 2015; Xu et al. 2017; Hoskin et al. 2020; Klein et al.
2021; Rogers et al. 2024a), demonstrating that oxygen-rich material
can survive during post-MS evolution and subsequently accrete onto
WDs.

An additional insight from our geological analysis is the tenta-
tive evidence for Si depletion relative to bulk Earth and CI chon-
drites (see Figure 5). For example, our estimated steady-state Mg/Si

ratios are approximately 1.5, 1.7, and 1.7 for SDSS J0859+5732,
SDSS J1109+1318, and SDSS J2311−0041, respectively (see Table
B1). Although these values have relatively large uncertainties, they
appear to exceed Earth’s mantle ratio of about 1.3 (Ringwood 1989).
Therefore, if real, they would point to the engulfment of polluting
bodies with a mineralogy primarily composed of magnesium silicates
—dominated by olivine with lesser amounts of pyroxene—, and rel-
atively depleted in silicon compared to bulk Earth. Together, the high
Mg/Si ratios and oxygen excesses observed in SDSS J0859+5732 and
SDSS J2311−0041 would imply the accretion of oxygen-rich exo-
planetary material with significant amounts of magnesium silicates,
such as olivine.

Beyond individual systems, an elevated Mg/Si ratio could have
important consequences for extrasolar geochemistry, shaping factors
such as water storage capacity, magnetic fields, or tectonic activ-
ity. For instance, high Mg/Si ratios would favour the formation of
forsterite-rich olivine, which is less dense and has a lower viscos-
ity than pyroxene (Mackwell 1991; Hansen & Warren 2015). This
difference in viscosity would impact the thermal and dynamical evo-
lution of the mantle; in particular, lower-viscosity olivine would lead
to more vigorous mantle convection and faster cooling of the core,
which could potentially shorten the lifetimes of magnetic fields and
plate tectonics (Spaargaren et al. 2020; Spaargaren et al. 2023) —
two critical processes for sustaining long-term planetary habitability
(Stern & Gerya 2024).

6.2 cecilia’s Current Performance and Future Work

In this paper, we have presented several upgrades to cecilia, includ-
ing the implementation of a more complex MCMC log-likelihood
function to allow for joint spectroscopic fits with a more careful
treatment of noise and spectral lines (see Section 4.2). We have also
reconfigured cecilia’s MCMC to enable the calculation of upper
abundance limits for those elements with unclear or unobservable
absorption lines. Although these upgrades have had a positive im-
pact on cecilia’s performance, there are still many opportunities
to improve our code. For instance, as discussed in BA24, cecilia
could be retrained with more WD models featuring synthetic photo-
metric observations, lower and higher abundance ranges, additional
heavy elements (e.g. Al, Na), and new regions of the spectrum, such
as the UV.

Building upon the recommendations of BA24, we propose several
new directions for future work to further enhance cecilia’s capa-
bilities. Our suggestions can be divided into two broad categories:
data processing, and Bayesian inference techniques. In relation to
the former, we would like to improve our methodology for correcting
telluric contamination by Earth’s atmosphere, particularly redward
of about 6,000 Å. In this paper, we cautiously removed all the most
important telluric bands from our Keck/ESI spectra, even if some of
these bands contained potential metal absorption lines (see Section
3.3). To address this limitation, we aim to develop a more selective
and targeted approach to removing telluric lines in ground-based
optical observations. For example, we could correct an observed
WD spectrum using a telluric absorption model generated by pack-
ages such as the Fortran line-by-line radiative transfer code LBLRTM
(Clough et al. 2005)27 or its Python telfit implementation28 (Gul-
likson & Dodson-Robinson 2013; Gullikson et al. 2014). The latter
uses a non-linear least-squares Levenverg-Marquardt algorithm to

27 http://rtweb.aer.com/lblrtm.html
28 https://telfit.readthedocs.io/en/latest/
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model telluric effects, given a list of molecular line strengths from
the HITRAN database and a nighttime atmosphere model containing
the pressure, temperature, and abundances of different molecules as
a function of height. We note that telfit can also employ custom
atmosphere profiles at the specific location of the user’s observatory.

In addition to developing better data processing techniques, we
have also identified multiple opportunities to improve cecilia’s
optimisation procedure, which we summarise below.

(i) Use of Gaussian Processes: Given the inaccuracy of state-of-
the-art atmosphere models to account for the problem of neutral
He line broadening from atom collisions, we would like to ex-
plore the use of Gaussian Process (GP) regression to improve the
quality of cecilia’s results, especially around poorly-modelled
absorption lines. Broadly speaking, GPs are powerful mathemat-
ical tools to perform joint non-parametric29 fits to astronomical
observations with both uncorrelated (i.e. white) and correlated
(i.e. red) sources of noise (e.g. instrumental effects or stellar
variability). Mathematically, GPs are defined as generalisations
of multivariate Gaussian distributions with a covariance matrix
(also known as kernel function) that encapsulates the underly-
ing stochastic (i.e. random) correlation structures between adja-
cent datapoints (Rasmussen & Williams 2006). In the context
of cecilia, we could implement a GP noise model to account
for imperfections in the atmosphere models of He-rich polluted
WDs. This approach would downweight problematic spectral re-
gions by inflating the systematic errors of poorly fitted absorption
lines, hence penalising atmospheric solutions with under- or over-
estimated abundances. On a practical level, the use of GPs would
involve balancing cecilia’s model flexibility, uncertainty esti-
mates, and computational speed (Czekala et al. 2015, C15). On
the one hand, GPs may be more efficient at capturing underes-
timated systematics in the WD atmosphere models, potentially
leading to more realistic and conservative results. On the other,
they may inflate the errors on the retrieved model parameters,
while also slowing down cecilia’s optimisation routine. These
trade-offs may nonetheless be reasonable if they ultimately im-
prove the reliability and accuracy of our code. In the future, we
can explore the integration of GPs with publicly available soft-
ware packages, such as tinyGP (Foreman-Mackey et al. 2024)
or starfish (C15).30

(ii) Exploration of new sampling mechanisms: The main optimisa-
tion method employed by cecilia is the differential evolution
MCMC algorithm of Ter Braak (2006). As we seek to improve
the efficiency of our pipeline, we could also experiment with
different inference techniques, such as nested sampling (Skilling
2004; Skilling 2006). Unlike MCMCs, which are designed to
sample the posterior distribution directly from the likelihood
function and the prior density, nested sampling revolves around
estimating the Bayesian evidence of a model. This parameter
is very difficult to determine, so nested sampling addresses this
problem in a dynamical and iterative way. More specifically, the
algorithm draws an ensemble of random “live points” from the
prior, removes the point with the lowest likelihood, generates new
live points with higher likelihoods, and repeats this process until

29 Parametric models have a fixed number of unknown parameters. This dif-
fers from non-parametric models, which can have an arbitrarily large number
of dimensions.
30 These packages can be accessed via https://github.com/dfm/
tinygp and https://starfish.readthedocs.io/en/latest/index.
html, respectively.

the Bayesian evidence of a model satisfies a certain threshold.
Therefore, unlike MCMCs, which are “memoryless” systems in
which the behaviour of two walkers only depends on their pre-
vious state, nested sampling methods systematically explore a
large volume of the parameter space and gradually compress it
based on regions of higher probability. With this strategy, they
are more robust to poor initial guesses as well as to multi-modal
distributions between different parameters (Ashton et al. 2022).
A potential nested sampling implementation is the open-source
package dynesty (Speagle 2020; Koposov et al. 2023).31

(iii) Bayesian model comparison: Central to our understanding of
metal pollution is our degree of belief in spectroscopic fits of
polluted WD spectra, especially when obtained with ML codes
that may not often be easily explainable. In the future, we could
improve cecilia by integrating a Bayesian model comparison
framework to assess the relative probability of different ML pre-
dictions in the absence or presence of a heavy element. This can
be achieved by calculating the so-called “Bayes factor,” which is
defined as the ratio

𝑅 ≡
𝑝𝑀1 · 𝜋𝑀1

𝑝𝑀2 · 𝜋𝑀2
, (10)

where 𝑀1 and 𝑀2 are two competing models, 𝑝𝑀1 and 𝑝𝑀2 are
their posterior probability distributions given the observed data,
and 𝜋𝑀1 and 𝜋𝑀2 are our a priori beliefs on each model. From
this expression, R≫1 and B≈0 would indicate a strong preference
for 𝑀1 and 𝑀2, respectively. However, more complex interpreta-
tions are also possible, such as those of Jeffreys (1998) and Kass
& Raftery (1995). In general, Eq. 10 is difficult to solve, so there
are several approximate forms of Bayesian model comparison.
For example, the so-called Bayesian Information Criterion (BIC)
evaluates the accuracy and complexity of different models based
on the maximum value of their likelihood function (L̂), the num-
ber of points in the observations (𝑛), and their number of free
model parameters (𝑘), i.e., BIC = −2 ln(L̂) + k ln(n).

(iv) Improved Treatment of Resolving Power or Spectral Resolution:
Our analysis of SDSS observations assumes a constant resolving
power of R=2,000 between about 3,800Å to 9,000Å, even though
𝑅 changes significantly by about 67% (from 1,500 to 2,500)
across this wide wavelength range. Our simplification does not
fully capture the intrinsic properties of the spectra, so future
iterations of cecilia could adopt a more adaptive approach,
either by convolving the data to a constant linear resolution in
wavelength space, or by directly supporting a variable resolving
power or resolution to better preserve the native characteristics
of the observations.

(v) Automated detection of chemical elements: In this paper, we
consider an element to be detected if (i) its cecilia predicted
abundance had a statistical error lower than or equal to a conser-
vative detectability threshold of 𝜎detection = 0.10 dex, and (ii) if
it exhibited at least a clear absorption line in the spectrum. This
validation process could be automated in order to streamline all
the criteria associated to a robust detection.

7 CONCLUSIONS

In this paper, we have used the ML-pipeline cecilia to constrain
the physical and chemical properties of five metal polluted He-

31 https://dynesty.readthedocs.io/en/latest/dynamic.html
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atmosphere WDs. We started by performed a joint fit to their SDSS
(R=2,000) and Keck/ESI (R=4,500) spectra with an MCMC model
consisting of 17 parameters (𝑇eff , log g, 11 elemental abundances,
and a jitter term and RV shift per spectrum). We then estimated
the geological composition of the WD pollutants from cecilia’s
predicted stellar abundances. The main computational and scientific
conclusions of our work are summarised below.

(i) Upgrades to cecilia (Section 4.2): We have improved
cecilia’s fitting procedure in two ways. First, we have re-
parametrised its MCMC to sample the posterior distribution
of the model parameters in linear space. This change will
eventually allow us to calculate robust upper abundance lim-
its for those elements with undetected spectral lines. Second,
we have modified our log-likelihood function (Eq. 1) to allow
for a joint fit of multiple spectra, regardless of their observa-
tional characteristics. We have also incorporated a jitter term
per spectrum to model unaccounted sources of noise in the
observations or in cecilia’s training atmosphere models.

(ii) Atmospheric Analysis (Section 4.3): We have identified a
total of 2, 6, 5, 4, and 6 chemical elements in the atmo-
spheres of SDSS J0231+2512 (Mg, Ca), SDSS J0859+5732
(H, O, Mg, Si, Ca, Fe), SDSS J1109+1318 (H, O, Mg, Si, Ca),
SDSS J1333+6364 (H, O, Mg, Ca), and SDSS J2311−0041
(H, O, Mg, Si, Ca, Fe), respectively. In terms of detected met-
als, SDSS J0859+5732 and SDSS J2311−0041 are the most
heavily polluted in our sample. For all five WDs, cecilia
constrains the abundances of the detected elements with
greater precision than our assumed noise floor of ≤0.20 dex
—a performance comparable to that of classical WD fitting
methods. We emphasise, however, that cecilia’s predictive
power is fundamentally restricted by the quality of its training
models and by its ML interpolation errors (see BA24 for a
detailed discussion of systematics using synthetic data). In
other words, although cecilia may yield lower statistical
uncertainties than conventional techniques, its overall per-
formance cannot exceed that of classical methods because it
is inherently limited by the accuracy of its underlying WD
atmosphere models.

(iii) Geological Analysis (Sections 4.4-5.2): Our results indicate
that the five WDs engulfed rocky extrasolar material with a
bulk composition largely consistent with those of CI chon-
drites (within 1-2𝜎tot), with the main rock-forming elements
(Mg, Fe, Si, and O) accounting for most of their interior com-
position by mass. Among these systems, SDSS J0859+5732
and SDSS J2311−0041 have statistically significant (> 2𝜎)
oxygen excesses, which could indicate the accretion of
oxygen-rich extrasolar material. These findings are not con-
clusive given the limited number of detected metals in each
WD and the uncertainties in cecilia’s stellar abundances.
However, even within this margin of error, our analysis is
sensitive enough to identify compositional deviations in the
WD pollutants. In the coming years, as next-generation opti-
cal/UV telescopes become operational, it may be possible to
disentangle their full geochemical properties and place them
in the broader context of extrasolar compositions.

To conclude, we have demonstrated that cecilia can constrain
the elemental abundances of He-rich polluted WDs with no a pri-
ori knowledge of their atmospheric composition and with mini-
mal human supervision. As we venture into the era of massively
multiplexed observational surveys (e.g. DESI, SDSS-V, WEAVE,

4MOST), cecilia can be used to rapidly analyse large volumes of
data within a practical amount of time, therefore offering a solution
to the human-in-the-loop problem of conventional WD characteri-
sation methods. In doing so, cecilia aims to lay the foundations
for a methodological shift towards population-wide studies of metal
pollution —a “Big Data” revolution with the potential to offer new
insights into the properties of extrasolar worlds.
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DATA AVAILABILITY

The SDSS and Keck/ESI spectra of our targets can be downloaded
from the SDSS DR18 and the Keck online databases. The spectra of
the standard stars described in Section 3 can be obtained from the
STScI archive.
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APPENDIX A: FIGURES

In Figures A1-A4, we present cecilia’s RV-shifted MCMC so-
lutions (in green) for the median-normalised Keck/ESI spectra of

MNRAS 000, 1–20 (2025)

http://dx.doi.org/10.1146/annurev-earth-060313-054740
https://ui.adsabs.harvard.edu/abs/2014AREPS..42...45J
http://dx.doi.org/10.1088/0004-637X/750/1/69
https://ui.adsabs.harvard.edu/abs/2012ApJ...750...69J
http://dx.doi.org/10.1117/12.859188
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1088/0004-637x/709/2/950
http://dx.doi.org/10.1088/0004-637x/709/2/950
http://dx.doi.org/10.3847/1538-4357/abe40b
https://ui.adsabs.harvard.edu/abs/2021ApJ...914...61K
http://dx.doi.org/10.1051/0004-6361/200811468
https://ui.adsabs.harvard.edu/abs/2009A&A...498..517K
https://ui.adsabs.harvard.edu/abs/2010MmSAI..81..921K
http://dx.doi.org/10.1051/0004-6361/201527169
https://ui.adsabs.harvard.edu/abs/2015A&A...583A..86K
http://dx.doi.org/10.1051/0004-6361/201423691
http://dx.doi.org/10.48550/arXiv.1711.03234
https://ui.adsabs.harvard.edu/abs/2017arXiv171103234K
http://dx.doi.org/10.5281/zenodo.8408702
https://doi.org/10.5281/zenodo.8408702
https://doi.org/10.5281/zenodo.8408702
http://dx.doi.org/10.1051/aas:1999267
https://ui.adsabs.harvard.edu/abs/1999A&AS..138..119K
http://dx.doi.org/10.1086/375492
https://ui.adsabs.harvard.edu/abs/2003ApJ...591.1220L
http://dx.doi.org/10.3847/1538-4357/aa9c43
https://ui.adsabs.harvard.edu/abs/2017ApJ...851...94L
http://dx.doi.org/https://doi.org/10.1029/91GL02492
http://arxiv.org/abs/0902.2850
http://dx.doi.org/10.48550/arXiv.0902.2850
http://dx.doi.org/10.1086/426387
https://ui.adsabs.harvard.edu/abs/2005ApJ...619L...1M
http://dx.doi.org/10.3847/1538-4357/834/1/1
https://ui.adsabs.harvard.edu/abs/2017ApJ...834....1M
http://dx.doi.org/10.1007/BFb0067700
http://dx.doi.org/10.1086/191111
https://ui.adsabs.harvard.edu/abs/1986ApJS...61..177P
http://dx.doi.org/10.1086/164410
https://ui.adsabs.harvard.edu/abs/1986ApJ...307..242P
http://dx.doi.org/10.1093/mnras/staa1148
https://ui.adsabs.harvard.edu/abs/1995A&AS..112..525P
http://dx.doi.org/10.3847/1538-3881/aabc4f
https://ui.adsabs.harvard.edu/#abs/2018AJ....156..123T
http://dx.doi.org/10.1038/s41467-021-26403-8
https://ui.adsabs.harvard.edu/abs/2021NatCo..12.6168P
http://dx.doi.org/10.1093/mnras/stv701
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.2083R
http://dx.doi.org/10.1111/j.1365-2966.2011.18200.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18200.x
http://dx.doi.org/https://doi.org/10.1016/0012-821X(89)90162-3
http://dx.doi.org/10.1088/0004-637X/712/2/974
https://ui.adsabs.harvard.edu/abs/2010ApJ...712..974R
http://dx.doi.org/10.1093/mnras/stad3557
https://ui.adsabs.harvard.edu/abs/2024MNRAS.527.6038R
http://dx.doi.org/10.1093/mnras/stae1520
https://ui.adsabs.harvard.edu/abs/2024MNRAS.532.3866R
http://dx.doi.org/10.1126/science.1219381
http://dx.doi.org/10.1088/0031-8949/90/5/054005
https://ui.adsabs.harvard.edu/abs/2015PhyS...90e4005R
http://dx.doi.org/10.1016/j.physrep.2022.09.001
https://ui.adsabs.harvard.edu/abs/2022PhR...988....1S
http://dx.doi.org/10.1086/521346
https://ui.adsabs.harvard.edu/abs/2007ApJ...669.1279S
https://ui.adsabs.harvard.edu/abs/2007ApJ...669.1279S
http://dx.doi.org/10.1086/341706
https://ui.adsabs.harvard.edu/abs/2002PASP..114..851S
http://dx.doi.org/10.1063/1.1835238
http://dx.doi.org/10.1214/06-BA127
http://dx.doi.org/10.1051/0004-6361/202037632
https://ui.adsabs.harvard.edu/abs/2020A&A...643A..44S
http://dx.doi.org/10.3847/1538-4357/acac7d
http://dx.doi.org/10.1093/mnras/staa278
http://dx.doi.org/10.1038/s41598-024-54700-x
http://dx.doi.org/10.1093/mnras/stz2337
http://dx.doi.org/10.1093/mnras/stz2337
http://dx.doi.org/10.1007/s11222-006-8769-1
https://ui.adsabs.harvard.edu/abs/2006S&C....16..239T
http://dx.doi.org/10.3847/1538-4357/ac86d5
https://ui.adsabs.harvard.edu/abs/2022ApJ...936...30T
http://dx.doi.org/10.1093/mnras/stz3191
http://dx.doi.org/10.1093/mnras/stz3191
http://dx.doi.org/10.5281/zenodo.5599854
https://doi.org/10.5281/zenodo.5599854
https://doi.org/10.5281/zenodo.5599854
http://dx.doi.org/10.1093/acrefore/9780190647926.013.238
https://doi.org/10.1093/acrefore/9780190647926.013.238
https://doi.org/10.1093/acrefore/9780190647926.013.238
http://dx.doi.org/10.1093/mnras/stad580
http://dx.doi.org/10.1093/mnras/stad580
http://dx.doi.org/https://doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1086/146877
https://ui.adsabs.harvard.edu/abs/1960ApJ...131..638W
https://ui.adsabs.harvard.edu/abs/1983A&A...121...77W
http://dx.doi.org/10.1051/0004-6361/202450509
https://ui.adsabs.harvard.edu/abs/2024A&A...691A.352W
http://dx.doi.org/10.1093/mnras/stv1201
http://dx.doi.org/10.1093/mnras/stu183
http://dx.doi.org/10.1093/mnras/stu183
http://dx.doi.org/10.1088/0004-637X/766/2/132
https://ui.adsabs.harvard.edu/abs/2013ApJ...766..132X
http://dx.doi.org/10.3847/2041-8213/836/1/L7
https://ui.adsabs.harvard.edu/abs/2017ApJ...836L...7X
http://dx.doi.org/10.3847/1538-3881/ab4cee
https://ui.adsabs.harvard.edu/abs/2019AJ....158..242X
http://dx.doi.org/10.2138/rmg.2024.90.06
http://dx.doi.org/10.2138/rmg.2024.90.06
https://ui.adsabs.harvard.edu/abs/2024RvMG...90..171X
http://dx.doi.org/10.1086/301513
https://ui.adsabs.harvard.edu/abs/2000AJ....120.1579Y
http://dx.doi.org/10.1086/669163
http://dx.doi.org/10.1086/669163
http://dx.doi.org/10.1086/591807
http://dx.doi.org/10.1086/591807
http://dx.doi.org/10.3847/0004-637X/819/2/127
https://ui.adsabs.harvard.edu/abs/2016ApJ...819..127Z
http://dx.doi.org/10.1086/377492
https://ui.adsabs.harvard.edu/abs/2003ApJ...596..477Z
http://dx.doi.org/10.1086/522223
http://dx.doi.org/10.1086/522223
http://dx.doi.org/10.1088/0004-637X/722/1/725
https://ui.adsabs.harvard.edu/abs/2010ApJ...722..725Z
http://dx.doi.org/10.1088/0004-637X/739/2/101
https://ui.adsabs.harvard.edu/abs/2011ApJ...739..101Z
http://dx.doi.org/10.1086/122654


20 Badenas-Agusti et al.

SDSS J0231+2512, SDSS J1109+1318, SDSS J1333+6364, and
SDSS J2311−0041 (in blue; air wavelengths). These figures also
illustrate cecilia’s predictions when modifying the best-fit abun-
dances of the detected elements by ±1𝜎tot (in red and orange). For
reference, we use green labels to denote cecilia’s detections, i.e.
those elements with 𝜎stat,MCMC≤𝜎detection = 0.10 dex and at least
one visible absorption line in the spectrum. In Figures A5-A8, we
show the corner plots of cecilia’s MCMC solutions, excluding the
undetected or tentative elements, as well as the the RV shifts of each
spectrum. Lastly, Figure A9 shows the continuous decay evolution of
metal mass fractions for SDSS J0859+5732 and SDSS J2311−0041,
focusing on cecilia’s detected metals.

APPENDIX B: TABLES

In Table B1, we provide the main compositional properties of our
targets during the build-up and steady-state phases of accretion. In
Table B2, we compare cecilia’s best-fit elemental abundances to
those obtained with the classical, line-by-line fitting method of DF12
(see Section 5.1 for a brief summary of the DF12 approach).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure A1. cecilia’s best-fit MCMC model (in green) for the median-normalised Keck/ESI spectrum of SDSS J0231+2512, with its corresponding ±1𝜎tot
models (in red and orange).
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Figure A2. cecilia’s best-fit MCMC model (in green) for the median-normalised Keck/ESI spectrum of SDSS J1109+1318, with its corresponding ±1𝜎tot
models (in red and orange).
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Figure A3. cecilia’s best-fit MCMC model (in green) for the median-normalised Keck/ESI spectrum of SDSS J1333+6364, with its corresponding ±1𝜎tot
models (in red and orange).
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Figure A4. cecilia’s best-fit MCMC model (in green) for the median-normalised Keck/ESI spectrum of SDSS J2311−0041, with its corresponding ±1𝜎tot
models (in red and orange).
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Table B1. Compositional properties of the five polluted WDs and their accreted material during build-up and steady-state (see Sections 4.3-4.4). The metal
mass fractions are only reported for those systems which exhibit the four main-rock forming elements at the same time (Mg, Si, Fe, and O). In this Table, we
only show cecilia’s detected metals, sorted by increasing condensation temperature 𝑇cond (Lodders 2003).

Property SDSS J0231+2512 SDSS J0859+5732 SDSS J1109+1318 SDSS J1333+6364 SDSS J2311−0041

Oxygen (Tcond=182 K)
log10 (𝜏O ) [yrs]

Not Detected

6.35 5.74 6.07 6.16
𝑀O [1020 g] 1303.56+770.35

−485.76 156.85+96.50
−60.10 172.14+110.23

−67.28 461.60+275.90
−173.57

¤𝑀O [108 g/s; Steady] 18.38+10.86
−6.85 9.15+5.63

−3.51 4.66+2.98
−1.82 10.15+6.07

−3.82
nO/nMg [Observed; Build-up] 8.15+4.86

−3.05 6.98+4.43
−2.71 5.06+3.53

−2.07 8.76+5.27
−3.31

nO/nMg [Steady] 8.27+4.92
−3.10 7.02+4.46

−2.73 5.06+3.53
−2.07 8.99+5.41

−3.40
MRO,Mg [Observed; Build-up] 5.36+4.97

−2.59 4.58+4.41
−2.24 3.33+3.37

−1.68 5.75+5.39
−2.78

MRO,Mg [Steady] 5.43+5.04
−2.62 4.61+4.44

−2.26 3.33+3.37
−1.68 5.90+5.53

−2.85
MFO [Observed; Build-up] 52.42+12.77

−13.28 – – 62.47+11.33
−13.05

MFO [Steady] 45.65+13.28
−12.88 – – 56.72+12.12

−13.36
Iron (Tcond=1357 K)

log10 (𝜏Fe ) [yrs]

Not Detected

6.16

Not Detected Not Detected

5.96
𝑀Fe [1020 g] 205.07+123.90

−76.84 58.19+38.74
−23.56

¤𝑀Fe [108 g/s; Steady] 4.51+2.72
−1.69 2.01+1.34

−0.81
nFe/nMg [Observed; Build-up] 0.37+0.22

−0.14 0.32+0.21
−0.13

nFe/nMg [Steady] 0.58+0.35
−0.22 0.51+0.34

−0.21
MRFe,Mg [Observed; Build-up] 0.84+0.78

−0.41 0.72+0.72
−0.36

MRFe,Mg [Steady] 1.33+1.24
−0.64 1.16+1.16

−0.59
MFFe [Observed; Build-up] 8.07+5.22

−3.28 7.75+5.57
−3.43

MFFe [Steady] 10.98+6.69
−4.34 11.07+7.36

−4.77
Magnesium (Tcond=1397 K)

log10 (𝜏Mg ) [yrs] 6.72 6.36 5.74 6.07 6.17
𝑀Mg [1020 g] 50.19+31.39

−19.37 243.31+143.83
−90.05 34.23+20.68

−12.91 51.70+32.94
−20.14 80.17+47.46

−29.67
¤𝑀Mg [108 g/s; Steady] 0.30+0.19

−0.12 3.38+2.00
−1.25 1.98+1.20

−0.75 1.40+0.89
−0.54 1.72+1.02

−0.64
nMg/nMg [Observed; Build-up] 1.00+0.59

−0.37 1.00+0.59
−0.37 1.00+0.59

−0.37 1.00+0.59
−0.37 1.00+0.59

−0.37
nMg/nMg [Steady] 1.00+0.59

−0.37 1.00+0.59
−0.37 1.00+0.59

−0.37 1.00+0.59
−0.37 1.00+0.59

−0.37
MRMg,Mg [Observed; Build-up] 1.00+0.00

−0.00 1.00+0.00
−0.00 1.00+0.00

−0.00 1.00+0.00
−0.00 1.00+0.00

−0.00
MRMg,Mg [Steady] 1.00+0.00

−0.00 1.00+0.00
−0.00 1.00+0.00

−0.00 1.00+0.00
−0.00 1.00+0.00

−0.00
MFMg [Observed; Build-up] – 9.60+5.98

−3.87 – – 10.74+6.79
−4.43

MFMg [Steady] – 8.22+5.17
−3.29 – – 9.45+5.96

−3.85
Silicon (Tcond=1529 K)

log10 (𝜏Si ) [yrs]

Not Detected

6.36 5.72

Not Detected

6.18
𝑀Si [1020 g] 162.48+96.50

−60.31 19.33+11.95
−7.35 47.44+29.85

−18.27
¤𝑀Si [108 g/s; Steady] 2.24+1.33

−0.83 1.17+0.72
−0.44 1.00+0.63

−0.39
nSi/nMg [Observed; Build-up] 0.58+0.35

−0.21 0.49+0.31
−0.19 0.51+0.32

−0.20
nSi/nMg [Steady] 0.57+0.34

−0.21 0.51+0.32
−0.20 0.50+0.32

−0.20
MRSi,Mg [Observed; Build-up] 0.67+0.61

−0.32 0.57+0.54
−0.28 0.59+0.56

−0.29
MRSi,Mg [Steady] 0.66+0.61

−0.32 0.59+0.56
−0.29 0.58+0.55

−0.29
MFSi [Observed; Build-up] 6.39+4.14

−2.62 – 6.32+4.44
−2.73

MFSi [Steady] 5.42+3.53
−2.21 – 5.48+3.82

−2.34
Calcium (Tcond=1659 K)

log10 (𝜏Ca ) [yrs] 6.55 6.18 5.55 5.89 5.98
𝑀Ca [1020 g] 4.15+2.65

−1.62 9.44+5.71
−3.51 6.60+4.23

−2.55 6.84+4.26
−2.60 5.62+3.36

−2.09
¤𝑀Ca [108 g/s; Steady] 0.04+0.02

−0.01 0.20+0.12
−0.07 0.59+0.38

−0.23 0.28+0.17
−0.11 0.19+0.11

−0.07
nCa/nMg [Observed; Build-up] 0.05+0.03

−0.02 0.02+0.01
−0.01 0.12+0.08

−0.05 0.08+0.05
−0.03 0.04+0.03

−0.02
nCa/nMg [Steady] 0.07+0.05

−0.03 0.04+0.02
−0.01 0.18+0.12

−0.07 0.12+0.08
−0.05 0.07+0.04

−0.02
MRCa,Mg [Observed; Build-up] 0.08+0.08

−0.04 0.04+0.04
−0.02 0.19+0.19

−0.09 0.13+0.13
−0.07 0.07+0.07

−0.03
MRCa,Mg [Steady] 0.12+0.12

−0.06 0.06+0.06
−0.03 0.30+0.29

−0.15 0.20+0.20
−0.10 0.11+0.10

−0.05
MFCa [Observed; Build-up] – 0.37+0.26

−0.15 – – 0.74+0.55
−0.32

MFCa [Steady] – 0.48+0.34
−0.20 – – 1.02+0.73

−0.43

𝑀cvz [10−6 𝑀⊙] 7.08 3.51 0.78 1.57 2.43
∑

𝑴Z [g] > 5.43 × 1021 > 1.92 × 1023 > 2.17 × 1022 > 2.31 × 1022 > 6.53 × 1022
∑

¤𝑴Z [g/s] > 3.40 × 107 > 2.87 × 109 > 1.29 × 109 > 6.33 × 108 > 1.51 × 109
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Figure A9. Mass fractions of cecilia’s detected metals for SDSS J0859+5732 (left) and SDSS J2311−0041 (right), normalised to those of CI chondrites
(black line; Alexander 2019a,b). The dashed vertical lines at 4.8𝜏Mg and 5𝜏Mg indicate the point at which these systems cease to show evidence of oxygen
excess, respectively (see Section 6.1).

Table B2. Comparison between the elemental abundances obtained with the classical, line-by-line fitting method of DF12 (left) and those predicted by cecilia’s
ML-based optimisation routine. The parentheses in the DF12 columns denote the number of absorption lines used to constrain each abundance measurement.
The uncertainties of cecilia’s results represent the total error (𝜎tot), calculated as the quadrature sum of the statistical (𝜎stat,MCMC) and systematic error
sources (𝜎sys,ML). As discussed in Section 5, cecilia’s estimated abundances are consistent with those of DF12 within 0.2 dex.

Property
SDSS J0231+2512 SDSS J0859+5732 SDSS J1109+1318 SDSS J1333+6364 SDSS J2311−0041

DF12 cecilia DF12 cecilia DF12 cecilia DF12 cecilia DF12 cecilia

log10 (H/He) -6.26 (1) – – -6.60±0.20 -4.39 (1) -4.33±0.20 -5.40 (1) -5.49±0.20 -6.07 (1) -6.26±0.20

log10 (O/He) – – -5.37±0.10 (2) -5.35±0.20 -5.35±0.19 (2) -5.66±0.20 -5.49±0.24 (2) -5.85±0.20 -5.51±0.15 (2) -5.64±0.20

log10 (Mg/He) -7.35 (1) -7.22±0.20 -6.20±0.07 (3) -6.24±0.20 -6.57 (1) -6.46±0.20 -6.48 (1) -6.54±0.20 -6.60 (1) -6.57±0.20

log10 (Si/He) -6.90 (1) – -6.30±0.10 (3) -6.48±0.20 -6.44±0.11 (3) -6.72±0.20 -6.91±0.16 (3) – -6.69±0.15 (3) -6.78±0.20

log10 (Ca/He) -8.89±0.10 (2) -8.58±0.20 -8.00±0.17 (3) -7.86±0.20 -7.58±0.17 (3) -7.34±0.20 -7.50±0.20 (3) -7.78±0.20 -7.97±0.04 (3) -7.94±0.20

log10 (Fe/He) – -6.62±0.13 (3) -6.66±0.20 – – -6.77±0.18 (2) -7.09±0.20
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