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ABSTRACT
We consider the observational signatures of giant impacts between planetary embryos. While
the debris released in the impact remains in a clump for only a single orbit, there is a
much longer lasting asymmetry caused by the fact that all debris must pass through the
collision-point. The resulting asymmetry is stationary, it does not orbit the star. The debris is
concentrated in a clump at the collision-point, with a more diffuse structure on the opposite
side. The asymmetry lasts for typically around 1000 orbital periods of the progenitor, which
can be several Myr at distances of ∼50 au. We describe how the appearance of the asymmetric
disc depends on the mass and eccentricity of the progenitor, as well as viewing orientation.
The wavelength of observation, which determines the grain sizes probed, is also important.
Notably, the increased collision rate of the debris at the collision-point makes this the dominant
production site for any secondary dust and gas created. For dust small enough to be removed
by radiation pressure, and gas with a short lifetime, this causes their distribution to resemble
a jet emanating from the (stationary) collision-point. We suggest that the asymmetries seen at
large separations in some debris discs, like Beta Pictoris, could be the result of giant impacts.
If so, this would indicate that planetary embryos are present and continuing to grow at several
tens of au at ages of up to tens of Myr.

Key words: celestial mechanics – planets and satellites: detection – planets and satellites:
formation – planet–disc interactions – circumstellar matter.

1 IN T RO D U C T I O N

The final stage of terrestrial planet formation is now widely be-
lieved to be one of chaotic growth, with the terrestrial planets built
up through series of planetary-scale impacts (commonly known as
giant impacts) between planetary embryos (e.g. Kenyon & Bromley
2006; Raymond et al. 2009; Kokubo & Genda 2010). While giant
impacts are perhaps most frequently discussed in relation to terres-
trial planet formation, they are certainly not limited to the terrestrial
zone of a planetary system. In our own Solar system, the Pluto–
Charon system (Canup 2005, 2011; Stern et al. 2006), and Haumea
and its collisional family (Brown et al. 2007) are both proposed to
have their origin in giant impacts. It has also long been suggested
that a large impact could explain Uranus’ large obliquity (e.g. Benz,
Slattery & Cameron 1989; Slattery, Benz & Cameron 1992).

Outside our own Solar system, there are numerous examples of
planets and debris discs that can be found at substantial distances
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from their parent star. Examples are the HR8799 system with four
massive gas giant planets, the outermost at 68 au and a debris disc at
90–300 au (e.g. Marois et al. 2008; Soummer et al. 2011; Matthews
et al. 2014), or Fomalhaut with a massive debris disc at 140 au (e.g.
Stapelfeldt et al. 2004; Boley et al. 2012). Debris discs are belts of
planetesimals and dust produced by destructive collisions amongst
the larger planetesimals (e.g. Wyatt et al. 2007a,b; Wyatt 2008).

The outer regions of planetary systems thus clearly provide an
environment in which giant impacts can occur. Indeed, some extra-
solar systems possess much more material at large distances than our
Solar system, such that more, and larger, impacts can be expected
than in the Solar system.

An essential property of giant impacts, wherever they occur, is
that they produce substantial quantities of debris. Giant impacts span
a large range of collision scenarios and outcomes from catastrophic
disruption to fairly efficient accretion dependent on impact velocity
and geometry (e.g. Leinhardt & Stewart 2012). As a result the
quantity of debris produced can vary greatly, but even impacts that
are apparently efficient accretion events release �1 per cent of the
mass of the colliding bodies in debris. Indeed, it is such debris that
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is liberated from the progenitor but remains bound to it that is key
to the models for the formation of our Moon (e.g. Canup 2004) and
Pluto–Charon (e.g. Canup 2005), while models for the formation
of Mercury require large quantities of unbound debris (Anic 2006;
Benz et al. 2007).

Debris produced by giant impacts, its properties, evolution and
detectability remains an understudied topic in comparison to the
giant impacts that produce it, and those studies that have been
done have generally focused on the terrestrial planet region. Previ-
ous work that has been conducted in this area include Kenyon &
Bromley (2004), who investigated debris produced during terrestrial
planet formation in a statistical way, and Jackson & Wyatt (2012),
who studied the evolution of debris produced by the Moon-forming
impact. Impacts occurring at large orbital distances emphasize dif-
ferent aspects of the debris evolution. In particular, since orbital
periods are longer and velocities are lower at larger distances, the
evolution of a debris disc is substantially slower, which means that
features that are short-lived and thus unlikely to be seen in the
terrestrial zone can be much longer lived and become important
characteristics in the outer regions. Furthermore, since a debris disc
at a large orbital distance is, by definition, much larger in spatial
extent, and also less likely to be hidden by the star, there is a much
greater possibility of obtaining spatially resolved images to observe
structure within the disc.

Of particular interest are disc asymmetries. There are a growing
number of young systems with resolved debris discs that display
asymmetries and other as yet poorly understood features, such as
HD 15115 (e.g. Kalas, Fitzgerald & Graham 2007; Rodigas et al.
2012) and HD 32297 (e.g. Kalas 2005; Schneider, Silverstone &
Hines 2005; Currie et al. 2012), with the 12 million year old Beta
Pictoris system (e.g. Telesco et al. 2005; Li, Telesco & Wright
2012) probably the best-known example. If we believe that giant
impacts are indeed common, particularly during the epoch of planet
formation, then we might reasonably expect that some of these
systems may have experienced a giant impact in the comparatively
recent past. If this is the case, a question that we should be asking
is: Can a giant impact explain some of the features of these discs?
If giant impacts can explain some of these features, thus providing
evidence for massive bodies at large orbital distances, this also
provides us with important information about the process of planet
formation.

In this work, we discuss the morphologies (Section 3) and de-
tectability (Sections 3.3 and 4) of debris discs produced by giant
impacts, and how these vary with parameters such as the mass of
the progenitor body. We also discuss the morphology of small dust
grains influenced by radiation pressure (Section 4.2) and CO (Sec-
tion 4.3), created in the destruction of the collisional debris. Finally,
we apply our models of giant impact debris to the debris disc of
Beta Pictoris (Section 5). First however, we describe the analytics
that underpin the determination of the orbits of the debris, and thus
the shape and features of the disc in Section 2.

2 O R B I T E QUAT I O N S

Consider a body that undergoes a collision by some impacting
projectile. Whether the collision is catastrophic, totally disrupting
the target, or cratering, excavating a small region of the surface, if
we want to describe the motion of any debris that escapes from the
target, our starting point is the orbit of the progenitor body. The orbit
of the escaping debris is clearly not going to be exactly that of the
progenitor however, since it has a velocity relative to the progenitor.

We can however use this ‘kick’ in velocity relative to the progenitor
to relate the orbits of the escaping debris to that of the progenitor.

Jackson & Wyatt (2012) briefly outlined this concept of relating
the orbits of the debris produced by an impact to that of the pro-
genitor via a velocity kick for the single case of the Moon-forming
impact, with a progenitor on a circular orbit. Since both Pluto–
Charon and Haumea, the two Kuiper belt bodies believed to have
suffered giant impacts, are presently in eccentric orbits (though it
is unknown whether Pluto was eccentric at the time of impact), and
there is no reason to believe similar bodies in extrasolar systems
would be circular either, an extension to eccentric progenitor or-
bits is desired. The concept of a velocity kick relating two orbits
is also applicable to many other problems, the scattering of small
bodies by a planet, for example. As such, here we extend these
equations to include eccentric and inclined progenitors and present
them in a general manner, before focusing our discussion on the
debris produced by a giant impact.

In this section, we first present general equations relating
the pre- and post-kick orbital elements (Section 2.1, see also
Appendix A). We then consider the simpler case of initially cir-
cular orbits in Section 2.2 to aid understanding and intuition for
the behaviour of the post-kick orbital elements, before returning
to eccentric orbits in Section 2.3. For interest, we also include a
comparison to the Gauss planetary equations in Appendix B, with
a brief discussion of where the planetary equations differ from the
kick formalism.

2.1 General orbits

Throughout this work, we will use a standard notation for the orbital
elements in which a = semimajor axis, e = eccentricity, r = distance
from central body, I = inclination, �= longitude of ascending node,
ω = argument of pericentre, f = true anomaly. We also make use of
the ancillary variables q = pericentre distance, v = particle velocity,
and vk = circular speed at orbital distance a, M = mass of central
body, m = mass of particle. Primes are used to indicate the post-kick
elements as opposed to the unprimed pre-kick elements.

The orientation of a general three-dimensional orbit is described
with respect to a fixed reference plane by the inclination, longitude
of ascending node and argument of pericentre. Without loss of
generality, however, we may define the x−y plane to be the plane
of the pre-kick orbit and the pre-kick argument of pericentre to be
zero (i.e. the pericentre of the pre-kick orbit lies on the x-axis), such
that I = � = ω = 0. The z-axis is then defined to point in the
direction of the initial orbital angular momentum with the pre-kick
particle orbiting in an anticlockwise sense.

The standard relation between the semimajor axis of the particle
and its velocity:

1

a
= 2

r
− v2

G(M + m)
, (1)

will apply both before and after the kick with the addition of primes
to a and v for the post-impact case, since the position of the particle,
and thus r has not changed.

The new velocity v′ is simply the vector sum of the old velocity
v and the kick velocity �v and thus v′2 = v2 + �v2 + 2v · �v. So,
we can combine the relations for a and a′ from equation (1) to relate
the semimajor axis before and after the kick in terms of the kick
velocity by

1

a′ = 1

a
− �v2 + 2v · �v

G(M + m)
. (2)
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Figure 1. Diagrammatic example of the effect of a single velocity kick �v

on the orbit of a particle. The original orbit is shown as a solid black ellipse,
while the new orbit after application of the velocity kick is the dotted ellipse.
The new orbit is constrained to pass through the kick-point, which sets the
simple relations for �′ and ω′ + f′. Also shown are the orientation of the
Cartesian axes and the definitions of θ and φ.

To proceed, it is convenient to represent v and �v in a Cartesian
coordinate system. While �v is best represented in a spherical
polar coordinate system, there is no obvious preferred orientation
for the associated Cartesian basis, and indeed in many cases, the
distribution will be spherically symmetric. Thus, we choose to use
the same Cartesian system as that defined above based on the pre-
kick orbit for simplicity, with θ as the angle between �v and the
z-axis and φ as the angle between the projection of �v into the
x−y plane and the x-axis. This definition of θ and φ is shown in
Fig. 1. Defining the orientation of the kick solely in terms of the
initial orbit of the particle also aids in allowing the kick formalism
to be as general as possible, since, if the problem to which the
formalism is to be applied introduces a preferred direction, it is a
relatively simple matter to determine the appropriate values of θ

and φ through rotations.
In this Cartesian coordinate system, v = Q(−Sf , (e + Cf ), 0)

and �v = �v(SθCφ, SθSφ, Cθ ). Here, Q = vk/(1 − e2)1/2, and we
introduce the common shorthand notation Sx and Cx for sin (x) and
cos (x), respectively, which we will use throughout.

With these definitions

v · �v = Q�vSθ [(e + Cf )Sφ − Sf Cφ]. (3)

Using this with equation (2), we obtain, after some condens-
ing of trigonometric functions and de-dimensionalizing using
v2

k = G(M + m)/a;

a

a′ = 1 −
(

�v

vk

)2

− 2√
1 − e2

(
�v

vk

)
Sθ (S(φ−f ) + eSφ). (4)

In a similar manner, the eccentricity relation,

e2 = 1 − h2

G(M + m)a
, (5)

will hold both before and after impact, adding primes to e, h and
a for the post-kick case, where h = R ∧ v = avk(1 − e2)1/2 ẑ and
h′ = R ∧ v′ with R = a(1−e2)

1+eCf
(Cf , Sf , 0), the position vector of

the particle at the time of the kick. Combining pre- and post-kick
eccentricity equations, we obtain

e′2 = 1 − (1 − e2)

(
h′2

h2

a

a′

)
. (6)

Expanding h′ in terms of h and a ‘kick’ term h′ = h + R ∧ �v,
and from the form of �v above,

R ∧ �v = a
1 − e2

1 + eCf

�v

⎛
⎜⎝

Sf Cθ

−Cf Cθ

SθS(φ−f )

⎞
⎟⎠ , (7)

and thus,

h′2

h2
= 1 + 2

(1 − e2)1/2

1 + eCf

(
�v

vk

)
SθS(φ−f )

+ 1 − e2

(1 + eCf )2

(
�v

vk

)2 (
C2

θ + S2
θ S

2
(φ−f )

)
. (8)

As in Murray & Dermott (1999), I′ will be given by cos(I ′) =
h′

z/h
′, which may be written as

cos I ′ =
(

h′
z

h

) (
h′2

h2

)−1/2

(9)

to utilize the simple form of h with h′2/h2 as already determined by
equation (8)

cos I ′ =
[

1 + (1 − e2)1/2

1 + eCf

(
�v

vk

)
SθS(φ−f )

] (
h′2

h2

)−1/2

. (10)

For �′, we utilize the geometry of the problem by noting that the
particle must pass through the point at which the kick is applied
and that since this point also lies on the pre-kick orbit it must lie
in the x–y plane. The line through the central star and the point of
application of the kick (the kick-point) thus marks the line of nodes
with the nature of the kick-point as ascending or descending node
determined by the sign of �vz such that

�′ =
{

f for θ ≤ π
2 ,

f + π for θ > π
2 .

(11)

Note that when θ = π
2 , �′ is strictly undefined since the particle

orbit will remain confined to the x–y plane. In this case, �′ may
to some extent be set arbitrarily so we choose to extend the θ < π

2
case to maintain consistency with our other definitions (such as
equation 12 below).

In like manner from the geometry of the problem, we obtain
(modulo 2π),

ω′ + f ′ =
{

0 for θ ≤ π
2 ,

π for θ > π
2 .

(12)

We may then use the relations

sin f ′ = a′(1 − e′2)

h′e′
R · v′

r
,

cos f ′ = 1

e′

(
a′(1 − e′2)

r
− 1

)
, (13)

from Murray & Dermott (1999) to find the values of ω′ and f′. Using
the form of v′ and r and equation (6), these may be written as

sin f ′ = 1

e′

(
h′2

h2

)1/2 (
eSf + (1 − e2)1/2

(
�v

vk

)
SθC(φ−f )

)
,

cos f ′ = 1

e′

(
h′2

h2
(1 + eCf ) − 1

)
. (14)

The only assumption made in the derivation of these equations is
that the change in velocity may be treated as impulsive. In physical
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terms, this requires that the time over which the change in velocity
takes place, �t, is small in comparison to the orbital period, P, of the
particle, such that the change in velocity due simply to the motion
of the particle around its orbit during the time �t is small compared
to the size of the kick. In mathematical terms, we may write this
requirement as

�v

vk
� |v(t + �t) − v(t)|

vk
= 2π

(1 + eCf )2

(1 − e2)2

�t

P
, (15)

where the right-hand side is the fractional change in the velocity
of the particle solely due to motion around its initial orbit. Debris
produced in a giant impact should always satisfy this criterion, as
the time-scale for launching the debris is ∼minutes–hours. Though
we describe the mass M as the ‘central body’ and the mass m as
the ‘particle’, we have not made any assumptions here about the
relative size of M and m as the criterion is independent of m. Any
problem in which this impulsive velocity change approximation is
valid may be treated using the equations presented here.

While the equations are presented in a reference frame such that
I = � = ω = 0, there is, as stated initially, no loss of generality as
a result and they can easily be applied to cases in which non-zero
values of I, � and ω are desired by application of simple rotations
to the resulting distributions. One caveat that should be noted with
respect to rotating the distributions is that the definition of I such
that it only takes values in the range [0,π], which we use here,
and the related definition of �, requires that some care be taken in
such transformations. It is easiest to unfold the I distribution on to
the range [−π, π] before performing the transformations and then
fold it back into the range [0, π] afterwards. To do this, simply
define I′ ≥ 0 if θ ≥ π

2 and I′ < 0 if θ < π
2 and always take the

first condition in equations (11) and (12). For convenience, we give
equations for arbitrary initial I, ω and � in Appendix A. Note that all
of our equations assume an initially bound orbit. The kick velocity
formalism can equally be applied to initially parabolic or hyperbolic
orbits, but some adjustments are necessary, in particular to account
for the semimajor axis as normally defined becoming negative.

2.2 Circular initial orbits

To analyse some of the dependences of the new orbital elements
on the magnitude and direction of the kick velocity, it is beneficial
to consider the simpler case that the initial orbit of the particle is
circular, such that e = 0. For a circular pre-kick orbit, the definition
of the true anomaly, f, becomes arbitrary, and so we choose to set
f = 0; in geometric terms, this means that we define the particle to
be on the x-axis at the time of the kick. All dependence on e and f
now drops out and equations (4), (6), (8), (10) and (14) simplify to

a

a′ = 1 − 2

(
�v

vk

)
SθSφ −

(
�v

vk

)2

, (16)

e′2 = 1 −
(

h′2

h2

a

a′

)
, (17)

cos I ′ =
[

1 +
(

�v

vk

)
SθSφ

] (
h′2

h2

)−1/2

, (18)

h′2

h2
= 1 + 2

(
�v

vk

)
SθSφ +

(
�v

vk

)2

(C2
θ + S2

θ S
2
φ), (19)

sin f ′ = 1

e′

(
h′2

h2

)1/2 (
�v

vk

)
SθCφ

cos f ′ = 1

e′

(
h′2

h2
− 1

)
. (20)

Equations (16)–(19) are equivalent to equations 1–4 of Jackson
& Wyatt (2012), but note that we cast the equation for I′ here in
a slightly different form that more intuitively handles retrograde
orbits.

2.2.1 Distribution of orbital elements

Fig. 2 shows the distributions of semimajor axes, eccentricities and
inclinations produced for a set of 20 000 particles on the same initial
orbit given a kick velocity of (�v/vk) = 0.1 and a spherically
symmetric distribution of kick angles. The key boundary of the
distributions is described by the green lines, which form a distinctive
‘V’ shape in the semimajor axis – eccentricity distribution. These
lines are associated with the apocentre or pericentre of the new orbit
being located at point at which the kick was applied (here, the old
semimajor axis distance), since the new orbit must pass through the
point at which the kick was applied and thus the apocentre cannot
be further in, nor the pericentre further out, than this distance. These
conditions on the apocentre and pericentre can be summarized by
the inequality a′(1 − e′) ≤ r ≤ a′(1 + e′).

The other boundary of the distribution, coloured magenta, is the
I′ = 0 contour. Points on this line correspond to kicks exactly in
the plane of the pre-kick orbit, thus corresponding to the largest
change in a and e, and hence to how much of the ‘V’ in semimajor
axis–eccentricity space is filled. The height of this boundary in the
uppermost panel of Fig. 2 is dependent on the magnitude of the
kick, rising for larger kicks and falling for smaller kicks, whereas
the position of the apocentre and pericentre conditions is constant.
Conversely, in the middle panel the I′ = 0 contour is of course con-
stant, whereas the height of the boundary defined by the apocentre
and pericentre conditions rises with increasing kick velocity.

From the colouration of the points in Fig. 2, we can see that
particles which have their semimajor axes reduced are those which
receive kicks with φ > 180◦, meaning that the component of the
kick in the direction of orbital motion is opposed to the motion of the
particle. This is as expected, and indeed from the form of equation
(16), we can also see that for a′/a < 1, we must have Sθ Sφ < 0. It
should be noted however that this is not a sufficient condition due
to the (�v/vk)2 term, and thus, φ = 180◦ is not a hard boundary
between the decrease and increase of the semimajor axis. The larger
the magnitude of the kick, the further towards higher values of φ

the line of a′/a = 1 (indicated in cyan in the lower panel of Fig. 2)
moves.

From Fig. 2 and the dependences of equations (16)–(20), we can
also make some simple general observations about non-spherically
symmetric distributions of kick angles. The angle θ = π/2 at I′ = 0
and moves away from this towards 0 or π at higher I′. So, if particles
are preferentially given kicks close to the plane of the original
orbit, such that θ is closer to π/2, high values of I′ are less likely,
decreasing the population of the upper parts of the middle panel of
Fig. 2 while increasing the population of the upper parts of the upper
panel. Similarly, if particles are preferentially kicked forwards (in
the direction of their previous orbital motion), then the semimajor
axis will be preferentially increased and the right-hand parts of both
the upper and middle panels will be more strongly populated.
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Figure 2. Distributions of orbital elements for a set of 20 000 particles given
a kick of magnitude (�v/vk) = 0.1 in a random direction from an initially
circular orbit. Top: a−e distribution, middle: a−i distribution, bottom: three
parameter a−e−i distribution. The boundaries of the distribution are set by
the new apocentre or pericentre being at the old semimajor axis distance
(green lines) and the I′ = 0 contour for a (�v/vk) = 0.1 kick (magenta line).
On the a−e−i distribution, we also show the line of a′/a = 1 in cyan, which
tracks close to one of the lines of principal curvature. Points are coloured
by the value of φ, with black corresponding to a kick directly away from the
star, yellow directly towards the star, blue in the direction of orbital motion
and red against the direction of orbital motion.

Figure 3. Fraction of particles that are put on to hyperbolic orbits (e′ > 1) as
a function of the kick velocity for an isotropic distribution of kick directions.
Above �v/vk = √

2 + 1 all particles have e′ > 1.

The minimum kick velocity for which an eccentricity of 1 is
achievable, and thus for which particles can be ejected from the
system by the kick, is (�v/vk) = √

2 − 1. Conversely, the max-
imum kick velocity for which an object can remain bound is
(�v/vk) = √

2 + 1. Both of these arrive as a result of the circular
velocity being a factor of

√
2 less than the stellar escape velocity at

the same distance. Thus, a kick that increases the forward motion
by a factor of

√
2 − 1, or completely cancels the forward motion

and provides an additional
√

2vk are the bounding cases for escape.
Fig. 3 shows how the fraction of particles that achieve hyperbolic
orbits changes as the kick velocity is varied between

√
2 − 1 and√

2 + 1 for an isotropic distribution of kicks.

2.2.2 Orbital distribution as a function of kick velocity

In the preceding section, we showed the distribution of orbital ele-
ments for a single value of the kick velocity, and discussed how the
orbital elements of an individual particle depend on the kick direc-
tion (as specified by θ and φ). In a debris cloud produced by a giant
impact however there will not be a single value of the kick velocity,
but rather a distribution of kick velocities. In Fig. 4, we show the
distributions of the semimajor axis, eccentricity, and inclination as
a function of the kick velocity, with a uniform distribution of kick
velocities between the bounding values of 0 and

√
2 + 1.

If we consider moving to a distribution of kick velocities in terms
of the three parameter surface in the lower panel of Fig. 2, the
change is that now rather than having a single surface we have a set
of nested surfaces corresponding to different kick velocities. The
surfaces corresponding to the lowest kick velocities lie closest to
a′/a = 1, e′ = I′ = 0, while higher velocity surfaces lie further away.
Applying this to the projections shown in Fig. 4, we can see that,
since either the eccentricity or inclination of a particle must change
on being kicked, the middle panel largely separates into bands of
different colour as both the minimum and maximum eccentricity
and inclination increases with increasing kick velocity. In the upper
panel on the other hand since the surfaces for all kick velocities
touch a′/a = 1, e′ = 0, we can see points of all colours in the lower
eccentricity region, though there is a general trend towards higher
velocity colours at higher eccentricities since high eccentricities are
only achievable with high kick velocities and low kick velocities
can only achieve low eccentricities.
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Figure 4. The orbital distributions as a function of kick velocity. Top: semi-
major axis–eccentricity, middle: inclination–eccentricity, bottom: semima-
jor axis–inclination. 100 000 particles are used with a random kick velocity
chosen uniformly between �v/vk of 0 and

√
2 + 1 (the maximum kick

for which a body can remain bound). On the semimajor axis–eccentricity
distribution, we show the apocentre and pericentre conditions in red.

The lower panel of Fig. 4 also largely separates into bands of dif-
ferent colour, for similar but slightly different reasons to the middle
panel. For a particle receiving a high kick velocity to obtain a rela-
tively low inclination requires it to obtain a higher eccentricity. For

very large kicks, a very low inclination can require an eccentricity
greater than 1, for which the semimajor axis becomes negative, and
thus, it does not appear in the lower panel of Fig. 4. As a result of the
increasing fraction of particles that achieve hyperbolic orbits as the
kick velocity is increased, as shown by Fig. 3, the number of points
at the high-velocity end of the spectrum visible in Fig. 4 decreases
significantly. Those particles that remain bound after receiving very
large kicks (�v/vk >

√
2) exclusively occupy retrograde orbits.

This should be borne in mind later on, as discs containing signif-
icant numbers of particles that received very large kicks will thus
possess material capable of higher collision velocities than might
be otherwise expected.

2.3 Initially eccentric orbits

Now that we have analysed some of the dependences of the new
orbital elements in the simpler case of initially circular orbits, it
is beneficial to return to the case of initially eccentric orbits. In
Fig. 5, we show the semimajor axis–eccentricity and semima-
jor axis–inclination distributions for initial eccentricities of 0.1
and 0.5.

One of the first things that we can see from Fig. 5 is that as
well as changes in the distributions for different eccentricities, the
distributions also change depending on the true anomaly at which
the particle is kicked, with kicks at apocentre producing a smaller
range of semimajor axes, and a larger range of inclinations, than
those at pericentre. The difference between kicks at apocentre and
pericentre is also more marked for higher eccentricities. If we look
at equation (4) this is due to the term (S(φ − f) + eSφ), since when

Figure 5. Semimajor axis–eccentricity distributions (upper row) and semi-
major axis–inclination distributions (lower row) for particles kicked at peri-
centre (left-hand column) and at apocentre (right-hand column) and two
different initial eccentricities (e = 0.1 and e = 0.5). An isotropic kick of
magnitude �v/vk = 0.1 is used. All distributions are coloured according to
the value of φ as described in Fig. 2. Each distribution is annotated with the
initial eccentricity. The inclination distributions for initial eccentricity 0.5
have been offset by +10◦ to separate the distributions.
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f = 0 (pericentre) the two sines are in phase, while when f = π

they are out of phase, and as the eccentricity is increased the effect
of the sines being in phase or out phase is enhanced. While there
are differences in the range of semimajor axes and inclinations
between kicks at apocentre and pericentre, we can see that the
range of eccentricities is on the other hand very similar.

We can also expect that the minimum kick velocity at which the
particle can be ejected will vary with f,(

�v

vk

)
ej,min

=
√

2

(
1 + eCf

1 − e2

)1/2

−
(

1 + 2eCf + e2

1 − e2

)1/2

,

(21)

which may also be written as(
�v

vk

)
ej,min

=
√

2
( r

a

)1/2
− v

vk
, (22)

where v is the velocity of the particle at r. As described for circular
orbits above, the maximum kick velocity that can be applied before
all particles are ejected is obtained by changing the sign of the
second term in equations (21) and (22). The minimum kick velocity
at which particles can be ejected is lower at pericentre than at
apocentre, which is perhaps slightly counterintuitive initially, but is
because a particle has a higher velocity at pericentre than the circular
velocity at the pericentre distance and so a smaller addition to the
velocity is needed to eject it, whereas at apocentre the velocity is
lower than the circular velocity at that distance. Conversely, however
the maximum kick velocity at which particles can remain bound is
higher at pericentre than at apocentre. At r = a, the minimum kick
velocity for ejection reduces back to �v/vk = √

2 − 1 as in the
circular case.

The change in the distribution as a function of true anomaly can
be further seen in Fig. 6, which highlights the changing position of
the outer bounding ‘V’, centred at the location of the kick-point,
which varies in distance as we change the true anomaly at which
the kick is applied. Fig. 6 also shows how the ‘V’ of the apocentre
and pericentre conditions always forms an absolute outer boundary
even if the kick is not large enough for the distribution to reach

one or both conditions in a particular instance, as is the case for the
initial e = 0.5 distributions in Fig. 5.

The apparent change in the shape of the inclination distribution
for initially eccentric orbits is less dramatic, maintaining the same
domed shape as in the middle panel of Fig. 2, albeit stretched or
compressed. The inclination follows the opposite trend with f to the
semimajor axis, with higher inclinations achievable for apocentre
kicks than for pericentre kicks. This we can understand intuitively
since the inclination of the orbit must be set by the ratio of the
vertical component of the kick velocity to the total velocity in the
old orbit plane (the initial orbital velocity plus the planar component
of the kick), and since at apocentre the orbital velocity is lowest, it
follows that this ratio can be larger here.

3 O BSERVI NG DUSTY DEBRI S

The figures in Section 2 give us an overview of where particles
that receive different kicks will end up, both in terms of orbital
elements and spatially, and shows us how particles concentrate near
the progenitor orbit. We now want to ask, if we observe the aftermath
of a real giant impact, what are we likely to see?

Real giant impacts release debris with a distribution of kick ve-
locities, and whereas in the figures in Section 2, we used a uniform
distribution simply to demonstrate the range of outcomes, we must
now ask what this distribution is. For the debris released by the
Moon-forming giant impact, Jackson & Wyatt (2012) found that
the velocity distribution was well fitted by a truncated Gaussian.
This was preferred over a power law due to a tail of particles at
high velocities, a feature also found in many of the simulations of
Leinhardt & Stewart (2012). If we correct for the energy required
by to escape Earth’s gravity, and also weight by mass to account for
the finding of Leinhardt & Stewart (2012) that there are variations
in the velocity distribution with the mass of the debris fragment, the
velocity distribution of the Moon-formation debris is well fitted by
a Gaussian with mean zero and standard deviation 5.20 km s−1. We
expect the velocity dispersion to scale with the escape velocity of
the progenitor body (e.g. Leinhardt & Stewart 2012), so different
values of the standard deviation will correspond to different masses

Figure 6. Semimajor axis–eccentricity distributions for particles on an initial orbit with an eccentricity of 0.5 kicked at three different points around their
orbit, left: at pericentre, centre: at the semimajor axis distance, right: at apocentre. Points are coloured by the kick velocity received with the distribution of
kick velocities uniform between zero and the maximum kick a particle can receive and remain bound in each case.
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for the progenitor. For progenitors of a constant density the escape
velocity scales as M1/3, and so since the orbital velocity scales as
r−1/2 to obtain the same dispersion in terms of �v/vk at different
orbital distances, we should rescale the mass as r−3/2.

3.1 Establishment of the disc

It takes the asymmetric disc a short time to become established and
smooth following the impact event. Immediately after the impact
the debris forms an expanding clump that follows the progenitor
object (top-left panel of Fig. 7). As the clump moves around the
orbit, it shears out as a result of the gradient in orbital period and
velocity across the clump from faster moving particles interior to
the progenitor to slower moving particles exterior to the progenitor.
Although the rate at which the clump shears is dependent on the
velocity dispersion of the debris, it is a rapid process and the clump
will typically have been dispersed after only one orbit. Even for a
debris cloud with a very tight velocity dispersion, this will take no
more than a few orbits. The ‘clump’ phase is thus unlikely to last
more than around 500 yr at 50 au.

After the clump phase, we enter the ‘spiral’ phase. Here, the
initial debris clump has been sheared out into a spiral structure, but
there is still enough coherence for there to be a visible spiral pattern
with coils composed of debris particles on similar orbits.

The spiral structure of the spiral phase would not be detectable
for some edge-on configurations and at lower resolutions, but high-
resolution images close to face-on would detect variations in the
dust density. The shearing process will continue and gradually coil

Figure 7. Phases of the dynamical evolution of a giant impact debris disc
created at (1,0) at t = 0 from a progenitor on a circular orbit. Top left:
appearance after 0.2 orbits. Top right: after 2 orbits. Bottom left: 200 orbits.
Bottom right: 10 000 orbits. A velocity dispersion of σv/vk = 0.3 is used.
The effects of precession due to a Jupiter mass planet interior to the disc at 0.2
semimajor axis units are included. All images are normalized individually
and have a Gaussian smoothing with FWHM 0.05 semimajor axis units
applied.

the spiral tighter and tighter until it has been completely smeared out
and the coils have merged. The shearing again has some dependence
on the velocity dispersion of the debris (and on the resolution of
observations), but will have been completed after 100 orbits for
even very tight velocity dispersions, and after around 50 orbits in
most cases.

Once the spiral has become so tightly coiled that the structure is
no longer visible, we enter a phase with a smooth, but still strongly
asymmetric, disc (bottom left of Fig. 7). The most important feature
of the disc in this phase, which first appears in the spiral phase, is the
phenomenon which we refer to as the collision-point. This arises
from the requirement that the new orbit of a particle must pass
through the point at which the kick is applied that is responsible
for the apocentre and pericentre conditions. Since for giant impact
debris, the point at which the kick is applied is the point at which
the collision occurs, and this is the same for all of the debris, the
collision-point forms a nexus for the orbits of all of the debris
fragments. In all of the figures in this section, the collision takes
place on the x-axis.

This smooth asymmetry also has a finite lifetime, and will even-
tually smear out into an axisymmetric structure (bottom right of
Fig. 7). The presence of other massive bodies in the system, or po-
tentially even self-gravity of the debris itself, will gradually cause
both the longitudes of ascending node, �, and arguments of peri-
centre, ω, of the orbits to precess. For a particle with an orbital
period, T, and semimajor axis, a (with the ratio of planet and parti-
cle semimajor axes, ap/a, given by α), the precession period is

tprecess = 4T

[
αb1

3/2(α)
Mp

M∗

]−1

, (23)

where t is the time since the starting point, Mp and M∗ are the
planet and star masses, and b1

3/2(α) is a Laplace coefficient (see
e.g. Murray & Dermott 1999; Wyatt et al. 1999). To first order
in α, b1

3/2(α) ≈ 3α. Note that the argument of pericentre and the
ascending node precess in opposite directions.

Around a Sun-like star with a Jupiter mass planet at one-fifth of
the orbital distance of the debris (e.g. 10 and 50 au), this leads to a
precession period of around 33 000 debris orbital periods (∼10 Myr
at 50 au). The debris distribution will have a range of semimajor axes
and the precession period varies quite rapidly with the semimajor
axis ratio. Including the dependence of the orbital period the pre-
cession period varies as a−7/2, leading to a factor of 2 difference in
precession period for debris with orbits differing by only 20 per cent
in semimajor axis. If we return to the semimajor axis distributions
in Figs 2, 4 and 5, we can see that such variations in semimajor
axis appear even for small kicks. As such, we expect variations of
factors of 2 or more in precession rate between different particles
such that one precession period at the progenitor semimajor axis
will be sufficient for the asymmetry to have been washed out.

In addition to possible massive planets elsewhere in the system,
interactions with the progenitor body itself will also lead to pre-
cession of the debris orbits. This is not easy to quantify with an
equation like equation (23), because the semimajor axis ratio for
many of the particles will go to 1 and the expansions on which
such equations rely fail to converge. The typical precession periods
induced by the co-orbital progenitor body are however similar in
magnitude to that calculated above for a distant Jupiter.

The spatially confined collision-point itself is shorter lived, last-
ing only a few tenths of a precession period, but there is still visible
asymmetry after the collision-point is no longer a meaningful con-
cept, as we can see from the bottom panels of Fig. 7. This sets a
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typical lifetime for the collision-point of a few thousand debris or-
bits (∼1 Myr at 50 au), and a typical time-scale for achieving total
axisymmetry of a few tens of thousands of debris orbits.

Once the collision-point has begun to be smeared out through
precession, the asymmetry in the small, visible, dust grains may also
be further washed out as a result of collisional diffusion. At early
times, when the collision-point is dominant however collisional
diffusion should not be significant, due to both the dominance of the
initial impact in setting the velocity dispersion, and the dominance
of the collision-point in the collision rate amongst the debris (see
Section 4).

There is therefore roughly a factor of 50–100 in lifetime between
both the clump phase and spiral phase, and the spiral phase and
the asymmetric disc. As such, while it is not beyond the realms
of possibility for the aftermath of a giant impact to be observed
in the spiral phase, it is much less likely than observing it in the
asymmetric phase. The clump phase however has a lifetime over
three orders of magnitude shorter than the asymmetric disc, and so
observing a system during this phase is very unlikely. The most
likely phase in which to observe a giant impact debris disc is of
course probably the axisymmetric phase (though this depends on
collisional lifetimes, see Section 4); however, other than transience
arguments based on system age (e.g. Wyatt et al. 2007a), it may
be difficult to distinguish a giant impact debris disc in this state
from other cold discs. As such, we focus on the smooth asymmetric
phase.

All of the phases of evolution discussed above also of course
apply to hot debris produced by impacts in the inner planetary
system, such as that released by the Moon-forming impact as studied
by Jackson & Wyatt (2012). Since the orbital time-scales in the inner
system are much faster, the asymmetric phases are much shorter
lived than for impacts occurring in the outer planetary system. As
such, observing a system in an asymmetric state after an impact
occurring in the inner planetary system would be less likely.

3.2 Disc morphologies

In Fig. 8, we show a selection of images of collisional debris in the
smooth asymmetric phase. The resulting debris structure is almost
entirely dependent on magnitude of the velocity kick (and so on
the mass of the progenitor), and so we show images produced
using velocity dispersions with different standard deviations, σv .
The velocity dispersions used (σ v/vk = 0.05, 0.1, 0.3, 0.5, 0.7 and
1), may be compared to the mass scale Ceres–Pluto–Moon–Mars–
Earth, which at 50 au from the Sun corresponds to σv/vk = 0.056,
0.13, 0.27, 0.55 and 1.24.

The images in Fig. 8 are simple density maps that illustrate the
density that one would expect in dust grains large enough not to
be significantly affected by radiation pressure. Millimetre-size and
larger grains will follow these distributions, while smaller grains
closer to the radiation blow-out size of ∼1 μm will deviate. We
discuss the distribution of small, blow-out size, grains in Section 4.2.
In observations, there will be other effects on top of these density
maps that will depend on the wavelength of observation, and how
that compares with the peak of the dust emission spectrum. Most
observational effects will tend to enhance the brightness of the dust
interior to the progenitor, but generally not in a simple 1/r2 fashion
due to wavelength dependences. Unlike Fig. 7, in Fig. 8 and later
figures, we use a logarithmic colour scale to better bring out the
structure of the disc.

Fig. 8 has been produced by generating a cloud of 105 particles
launched from their progenitor in accordance with the equations

in Section 2, and then following the dynamical evolution for 100
orbits, to the end of the spiral phase, including the gravitational
effect of the appropriate progenitor body, with the MERCURY N-body
integrator.1 The particles are then spread around their orbits by
randomization of the mean anomaly to produce a smoother image.
This process can result in a slight streakiness around the edges of
the image where the orbits are sparse.

All images in Fig. 8 are generated using progenitor semimajor
axes of 50 au around a 1 M
 star; however, a disc with the same
σ v/vk at a different orbital distance will look very similar. The only
influence that can change noticeably between different semimajor
axes is the fractional Hill radius of the progenitor, RHill/a, which
determines how much the collision-point is puffed out in the radial
direction owing to scattering of particles during the progenitor’s
passage through the collision-point. Moving from 50 to 10 au or
250 au, while maintaining the same σ v/vk, RHill/a will only change
by a factor of ∼√

5 which has little effect on Fig. 8. Variation with
stellar mass is even less important since if we maintain the same
σ v/vk at the same orbital distance while varying the stellar mass
RHill/a will only vary as M1/6

∗ .
Since the collision-point will be either the ascending or descend-

ing node of the particle orbit (as determined relative to the pro-
genitor orbit), all of the debris fragments will thus also share the
same line of nodes, and on the opposite side of the star from the
collision-point there will be a line we call the anticollision line
through which all of the orbits will also pass. The alignment of the
line of nodes is responsible for the bow-tie-like appearance of many
of the edge-on views shown in the y−z panels of Fig. 8, because
particles that receive smaller kicks will lie closer to the progenitor
orbit. At high values of σ v/vk, significant amounts of material is
put on to polar orbits and the bow-tie structure is less apparent;
however, the anticollision line begins to become visible at the left-
hand side of the face-on image as a result of the enhanced surface
density.

As we move from lower to higher σ v in Fig. 8, the disc becomes
progressively broader at locations away from the collision-point,
and more dominated by the collision-point. At moderate to large
values of σ v , the wide breadth of the ring away from the collision-
point means that the region interior to the orbit of the progenitor can
be characterized by a cavity between the star and the collision-point
with dust filling the rest of the region. Above σv = 1 the trend
towards increasing dominance of the collision-point over the rest
of the disc continues, but more slowly, such that it is difficult to
distinguish a Neptune/super-Earth scale impact (σv = 2.5–3) from
an Earth-scale impact by visual inspection, particularly in a face-
on view. The disc continues to become thicker in the z-direction,
but again this is a slow increase. The growing number of parti-
cles of retrograde orbits as σ v is increased will make collisions
within the debris distribution more violent and accelerate the colli-
sional evolution, but this does not affect the visible morphological
strongly.

The increasing dominance of the collision-point as we increase
σ v is due to the fact that as the kick velocity is increased the volume
of space accessible to the debris increases, as we can see from Fig. 5,
since the range of semimajor axes, eccentricities and inclinations all
increase. Away from the collision-point, there is thus a much larger
volume of space through which the debris can be spread at higher
σ v . All of the particles must still pass through the collision-point
however, and so the density contrast between the collision-point and
the rest of the disc increases.

1 see Chambers (1999).
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Figure 9. Top row: particle density along line cuts through the images in Fig. 8. At left the cut is around a ring of radius 1 in the x−y plane, at centre it is
along z = 0 in the x−z plane, and at right it is along z = 0 in the y−z plane. Bottom row: particle density integrated over one dimension of the images in
Fig. 8. At left the integral is over radius, and at centre and right right it is over z. Within each frame all curves are normalized to a peak value of 1.

3.2.1 Dust density variations

To supplement Fig. 8, in Fig. 9, we show how the particle density
varies across the ring, both by taking the density along a line cut
through the images in Fig. 8, and by integrating over one of the
dimensions, and how this changes with σv . These cuts and inte-
grals illustrate even more clearly how the collision-point becomes
progressively more dominant as σ v is increased. In particular, the
transition from a two-horned profile to a three-horned one and fi-
nally to a centrally peaked profile in the y−z images is illustrated
very clearly. The exact shape of the density variation along a line
cut will of course vary with the resolution of observations; however,
the integrals will be much more robust.

In Fig. 10, we then show how a selection of potentially observ-
able diagnostic ratios between different parts of the disc vary with
σ v , with a view to using observations to constrain σv and so the
progenitor mass. We can see that at low σ v the ratio between the
ansae in the x−z plane (red lines) fall rapidly with increasing σv

before flattening out at higher σ v . The ratio between the collision-
point and anticollision line (green lines) behaves similarly, though
the ratio constructed from the integrals flattens out more slowly. The
ratio between the two halves of the disc in the x−y plane (black
line) however is rather flat at lower σ v before rising at intermediate
values and then levelling off once more.

3.2.2 Discs with eccentric progenitors

All of the discs in Fig. 8 are the result of impacts involving pro-
genitors on circular orbits; however, as we saw in Section 2.3, the
eccentricity of the progenitor can have a significant effect on the
resulting distributions of orbital elements. In Fig. 11, we show dust
density maps like those of Fig. 8 but now for non-zero progenitor
eccentricities.

The primary effect of a non-zero progenitor eccentricity is to
introduce additional sources of asymmetry in the disc. First, the
disc is now centred around the elliptical orbit of the progenitor.

Figure 10. Ratios of different quantities from Figs 8 and 9 as a function
of the kick velocity. Black: the ratio of the integral of the right-hand side
of the face-on images over the left-hand side (+x/ − x). Red: ratio of the
ansae values in the x−z plane (centre column of Fig. 9), solid: the ratio
of peaks from the line cut (upper frame), dashed: ratio of the sums within
0.15 of −0.95 and 0.95 in the lower frame. Green: collision-point versus
anticollision line ratio with respect to θ (left-hand column of Fig. 9), solid:
trough-to-peak ratio in the upper frame, dashed: ratio of the sums within
20 degrees of the anticollision line and collision-point.

Additionally, since particles spend more time near apocentre than
near pericentre, the dust density is also enhanced near the apoc-
entre of the progenitor orbit. This additional asymmetry increases
in strength as the progenitor eccentricity is increased, and interacts
with the asymmetry due to the collision-point.

Since the collision-point asymmetry results in higher dust density
near the collision-point, and the eccentric progenitor asymmetry
results in higher dust density near the apocentre of the progenitor
orbit, the interaction between the two can be either constructive or
destructive depending on whether the impact occurs nearer to the
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Figure 11. Dust density for debris produced by impacts involving progenitors on initially eccentric orbits. The eccentricity of the progenitor and location of
the impact on the orbit are indicated at the top left of each set of frames. A velocity dispersion of σv/vk = 0.3 is used in all cases. All images are normalized
to a maximum of 1.

pericentre or apocentre of the progenitor orbit. The extreme cases
are the impact occurring exactly at pericentre or apocentre, as we
can see in the lower row of Fig. 11, where we can see that the
density asymmetry is much stronger for the impact occurring at
apocentre than at pericentre. The opposite is true for the asymmetry
in how dispersed the disc material is at a given location, since
material is dispersed over a wider range of radii at the apocentre
of the progenitor orbit, and opposite the collision-point. We can
also see that in the general case, where the impact does not occur
at the apocentre or pericentre that the bow-tie shape of the disc
when viewed down the line of nodes is now lopsided rather than
symmetrical.

In addition to introducing further asymmetry into the disc, since
the kick velocity at which material can be ejected depends on the
true anomaly at which it is kicked (equations 21 and 22), the amount

of debris material that is lost immediately after the impact depends
on the true anomaly at which it occurs. For example, in Fig. 11 in
the bottom-right panel just under 1 per cent of material is placed on
to hyperbolic orbits, whereas in the bottom-left panel over 7 per cent
achieves escape.

3.3 Detectability of the dust

In addition to considering the lifetime of a disc in the asymmetric
state, we must also consider the brightness of the dust emission, and
its detectability. The brightness of the dust emission is determined
by several factors, and will vary depending on the wavelength at
which we observe it. If we consider simply the bolometric lumi-
nosity of the dust to keep the situation as simple as possible the
most important factors are the mass of debris in the disc, its orbital
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radius, and the size distribution of the debris. The characteristic
orbital radius of the disc is simply set by the orbital distance of the
progenitor body.

The mass of debris in the disc is also dependent on the pro-
genitor. At the most basic level the mass of debris clearly cannot
exceed the mass of the progenitor. Completely pulverizing a body
requires extremely energetic impacts with impact velocities many
times the escape velocity of the body (e.g. Leinhardt & Stewart
2012; Stewart & Leinhardt 2012). When we are considering mas-
sive bodies at large orbital radii the orbital velocities are smaller
than the escape velocity of the body, rendering such violent im-
pacts impossible. While small bodies may be able to participate
in catastrophic impacts and shed large fractions of their mass as
debris, larger ones will be restricted to less violent regimes, with
commensurately lower debris production. For the hit and run and
partial accretion/erosion regimes of Leinhardt & Stewart (2012) and
Stewart & Leinhardt (2012), within which we would expect impacts
involving large bodies to fall, the typical debris production is around
3–5 per cent of the colliding mass (Stewart, private communication).
For massive bodies, we thus make a relatively conservative estimate
that the debris mass is 3 per cent of the mass of the progenitor, and
would expect typical variations of around a factor of 2.

The final factor in determining the brightness of the dust, the size
distribution, is the least well constrained. Considering a differential
size distribution n(D)dD ∝ D−αdD Leinhardt & Stewart (2012)
find that α = 3.85 provides the best fit to their simulations. However,
there is a considerable degree of uncertainty in this, particularly for
the low-energy impacts that are most likely for massive bodies at
large orbital distances. A size distribution with α = 3.5 is expected to
occur in a steady state, self-similar, collisional cascade (Dohnanyi
1969; Tanaka, Inaba & Nakazawa 1996), which is similar to the
value found by Leinhardt & Stewart (2012) and has other useful
properties, in particular with consideration to the future evolution
of the disc brightness. As such, we adopt a size distribution with
α = 3.5 here. Having adopted a slope for the size distribution,
we must also set the upper and lower bounds of the distribution.
The lower bound will be set by the removal of small dust grains
by radiation pressure. The blow-out size, Dbl, is given by Dbl =
0.8(L∗/L
)(M
/M∗)(2700 kg m−3/ρ) μm (Wyatt 2008), and will
be around a micron in most cases (it can be significantly different for
collisions occurring predominantly at the periapse of an eccentric
orbit, e.g. Wyatt et al. 2010). The upper bound is much more difficult
to constrain, and so we consider a wide range of possible values.

For a size distribution with power-law slope of α = 3.5, the
fractional luminosity of the debris is related to the mass of the
debris by

f = 0.37r−2D
1/2
bl D1/2

maxMtot, (24)

where Dmax is the size of the largest objects in km, r is the radius
of the disc in au, Dbl is the radiation blow-out size in μm and
Mtot is the mass of the debris in M⊕ (Wyatt 2008). In Fig. 12,
we use this to show how the initial fractional luminosity varies
with different values of σ v and Dmax for an impact at 50 au from a
Sun-like star. As we increase the progenitor mass, then if a fixed
percentage of the progenitor mass is released as debris, the debris
mass and thus fractional luminosity also increases. Through the
expected proportionality of σ v to the escape velocity, we can also
relate the fractional luminosity to σ v . Here, we assume that the
density of the progenitor remains constant at that of the Earth in
order to maintain a simple relation between σv and progenitor mass
(σv ∝ M1/3

prog), but note that in general we expect the density to

Figure 12. Initial fractional luminosity of impact debris versus σv and pro-
genitor mass for an impact occuring at 50 au from a Sun-like star assuming
3 per cent of the progenitor mass is released as debris. The black dotted line
represents the approximate detection limit. The relationship between σv and
progenitor mass assumes a constant density equal to that of the Earth.

increase as the mass increases, such that σv should increase slightly
faster with mass than our M1/3

prog.
Although the mass released as debris is kept as a fixed percentage

of the progenitor mass in Fig. 12, the debris mass that is retained
in the disc increases more slowly at higher σv . This is because
at higher kick velocities a larger fraction of particles are lost (see
Fig. 3), and so in broader velocity distributions that contain a larger
fraction of high-velocity particles more material will be ejected and
not form part of the disc. This is the cause of the slight curvature of
the lines above σ v/vk ≈ 0.5.

Note that for Fig. 12, we assume that the r in equation (24) is
the semimajor axis of the progenitor (here 50 au). Since the disc is
radially broad away from the collision-point, especially for higher
values of σ v , we can expect that this will not be quite right because
of the extra contribution from material closer to the star. This can
increase the brightness by up to 20–30 per cent, but the effect on
Fig. 12 is fairly small.

As we decrease the size of the largest objects in the distribution the
surface area of the debris increases, and thus so does the fractional
luminosity. A reasonable estimate for the level at which a cold debris
disc can be detected is a fractional luminosity of 10−6, shown by
the dotted black line in Fig. 12 (e.g. Eiroa et al. 2013). We can thus
compare the fractional luminosity curves to this detection level, and
determine whether we would be able to detect the debris from a giant
impact involving a progenitor of a given mass for a certain size of the
largest objects in the resulting debris. For a Lunar-mass progenitor
(0.012 M⊕) the largest objects would need to be smaller than 10 m
in size, while for an Earth-mass progenitor the largest objects can be
up to 10 km size. For an object less massive than Ceres (∼1021 kg)
even if the largest objects were mm-size the debris would not be
detectable at the 3 per cent release level.

Although large bodies will only be able to take part in low-energy
impacts, small bodies may be able to participate in more violent
encounters. This would release larger fractions of the progenitor
mass as debris and raise all of the curves in Fig. 12, potentially by
a factor of up to 30 (corresponding to total destruction). Impacts
involving small bodies may thus still be detectable, but only if
they are highly destructive (i.e. a large fraction of the progenitor is
converted into debris). Since the width of the velocity dispersion
is proportional to the escape velocity of the progenitor, we can
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suggest that destructive impacts are possible for σv/vk � 0.1. At
larger values of σ v/vk, we expect smaller variations in the height
of the curves in Fig. 12, typically around a factor of 2.

While the size of the largest objects in the size distribution is
a poorly constrained parameter, we may reasonably expect that it
decreases as we decrease the size of the progenitor. As such, we
can expect that rather than following a single line in Fig. 12, we
should move up the lines as we move to smaller progenitor masses,
meaning that the fractional luminosity will vary more shallowly
with progenitor mass and σ v .

Finally, we should note that, as we have hinted earlier, the quantity
described in Fig. 12 is the initial fractional luminosity, and this
will subsequently evolve with time. After their initial production
the debris fragments will continue to collide with one another and
shatter, gradually grinding down until they reach the blow-out size
and are removed. The mass of the disc and its fractional luminosity
will thus diminish over time. A feature of the size distribution,
we have adopted is that the time-scale of the collisional evolution
is determined by the size of the largest objects. We discuss the
collisional evolution in detail in Section 4.

4 C O L L I S I O NA L E VO L U T I O N

As we noted earlier, after the debris is released in the generating
giant impact it will then continue to evolve through mutual collisions
within the disc of debris as well as dynamically through interactions
with the gravity of massive bodies in the system. If we follow an
individual debris fragment this fragment will experience collisions
with other members of the debris distribution at a rate

Rcol = nσvrel, (25)

where σ is the cross-sectional area of the fragment for collision
(which may be larger than the physical cross-sectional area due
to gravitational focusing), and n and vrel are the locally calculated
number density of fragments and their relative velocity with respect
to the fragment we are following. That n and vrel are locally cal-
culated is of key importance. In any disc, we can expect that there
will be radial gradients in the disc properties such that the collision
rate may vary with orbital distance; however, in the case of a highly
asymmetric disc like those we are dealing with here, we must also
account for azimuthal variations in the disc quantities.

In Fig. 13, we show a map of the collision rates across the disc
for debris produced by an impact with σ v/vk = 0.3. To construct
this map the collision rate has been calculated individually for each
particle in the image by determining the density and relative velocity
in the immediate vicinity of the particle, the image is then a two-
dimensional histogram weighted by the individual particle collision
rates, and thus represents the collision rate surface density.

By comparing with its counterpart in Fig. 8(c), we can see that
the surface density of collisions largely follows the particle surface
density, but with a much stronger variation. This is as would be
expected, since the collision rate for each individual particle varies
in proportion to the density, so the density of collisions should vary
roughly as the square of the particle density. The collision-point and
anticollision line in particular are much more prominent because of
the substantially increased density at these locations. The effect for
the anticollision line is particularly noticeable considering that it
could not be seen at all in Fig. 8(c). This is because the particle
surface density (which is what is shown by Fig. 8) does not increase
significantly at the anticollision line, since the disc is thinner verti-
cally, but nonetheless the volume density does. At the collision-point
on the other hand, both the surface and volume densities increase

Figure 13. Image showing the normalized rate of collisions within a disc
produced by an impact with σv/vk = 0.3. Produced using the same data as
the bottom-left panel of Fig. 8.

substantially. In addition, the collision-point and anticollision line
receive a further minor enhancement due to the fact that as all of
the particle orbits cross here, the relative velocities of the parti-
cles are also higher. Our naming of the collision-point intentionally
foreshadowed its dominant role in the collisional evolution of the
disc.

When integrated over the whole of the disc, the effect of the asym-
metry is to dramatically increase the collision rate by several orders
of magnitude over the collision rate that would be calculated for
an axisymmetric disc. As a result, the disc will evolve significantly
faster collisionally than an axisymmetric disc would be expected to.

4.1 Evolving the cascade

Now that we know what the collision rate is within the disc, we can
proceed to evolve the mass of the collisional cascade, and thus its
luminosity. One of the advantages of the n(D)dD ∝ D−3.5dD size
distribution that we have adopted is that the mass of the cascade
is dominated by the largest objects in the distribution. While the
surface area, and thus luminosity, of the disc is dominated by the
smallest objects, it is the break-up of the largest objects that re-
plenishes the supply of small dust and so the lifetime of the largest
objects sets the evolution time-scale of the whole disc.

To determine the lifetime of the largest objects, we need to know
Dcc(Dmax), the size of the smallest object that is capable of collid-
ing catastrophically with an object of size Dmax. To calculate this,
we utilize the velocity-dependent dispersal threshold of Stewart
& Leinhardt (2009). The rate at which the largest objects expe-
rience catastrophic collisions is then Rcc = nσcc(Dmax)vrel, where
σcc(Dmax) is the catastrophic collision cross-section for an object of
size Dmax, given by

σcc =
∫ Dmax

Dcc(Dmax)
n(D)

(
Dmax + D

2

)2

dD, (26)

neglecting gravitational focusing. The lifetime of the largest objects,
τ , is then simply 1/Rcc, and will increase over time as the mass of
the debris distribution decreases, and thus the normalization of n(D)
falls. The mass of the disc then evolves as

m(t + δt) = m(t)
1

1 + δt/τ
. (27)
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Debris from giant impacts at large radii 3771

Figure 14. Temporal evolution of the fractional luminosity of a disc produced by a giant impact occurring at 50 au from a Sun-like star, releasing debris equal
to 3 per cent of the progenitor mass, for a selection of velocity dispersions and largest fragment sizes. The black line indicates the approximate detection limit.
The colour scale gives the mass of the progenitor (in M⊕), with the corresponding value of σv/vk in parentheses. The line style corresponds to the value of
Dmax, as indicated.

Solving these equations for a selection of velocity disper-
sions/initial disc masses and sizes of the largest debris fragments,
we obtain Fig. 14. This shows us that, provided that the disc is
initially detectable, it will in general remain so for at least 105 yr
at 50 au, and typically for the whole ∼106 yr duration of the asym-
metric phase. In order to get a single curve for the evolution of each
distribution we calculate, we integrate the collision rate around each
particle orbit and then average over all particles to obtain a mean
value of Rcc. Note that we neglect the effects of dynamical evolution
since we are focused on a single dynamical phase and during the
asymmetric phase dynamical effects such as reaccretion will have
a negligible effect on the disc mass aside from fragments put on
to initially hyperbolic orbits, which are already accounted for. As
such, the luminosity evolution in Fig. 14 beyond around 106 yr will
be faster than in reality, since once the disc has been symmetrized
the rate of collisional evolution will slow down. During the period
that the disc remains asymmetric however, the evolution in Fig. 14
will be accurate.

Note that the collisional model we use, assuming that the mass
flux is given by the ratio of the total mass and the catastrophic
collision time-scale of the largest objects (equation 27), is an ap-
proximation. A more complex model, such as that of Kobayashi &
Tanaka (2010), which explicitly accounts for a distribution of colli-
sion outcomes integrated across the whole collisional cascade, may

produce a mass flux that is higher than our simple model. Compared
to a model such as that of Kobayashi & Tanaka (2010), we may thus
slightly overestimate the detectable lifetime of the disc for a specific
value of Dmax.

In addition, as stated in Section 3.3, our size distribution slope of
α = 3.5 is also an approximation. Furthermore, although α = 3.5
is the slope of an idealized self-similar cascade, in reality variation
of the strength of debris objects with size, and removal of small
dust grains by radiation forces, can cause deviations from this (e.g.
Wyatt, Clarke & Booth 2011).

In light of the orders of magnitude uncertainty in the value of
Dmax, and the uncertainties in the impact energies required for catas-
trophic collisions (Q∗

D), the errors introduced by the approximations
in our simple model are comparatively small. As such, while the
limitations of our simple collisional model should be borne in mind,
for the purposes of this study, its utility and ease of understanding
outweighs its limitations.

4.2 Blow-out grains

In general, it is assumed that within the main debris disc the disc
luminosity is dominated by bound grains. Dust grains with sizes of
�1 μm are strongly influenced by radiation pressure, and thus do
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not follow the same orbits as the larger grains from which they are
produced. These grains are put on to highly eccentric, or hyperbolic,
orbits, and thus are swept outwards from the main disc where they
can dominate the luminosity at very large distances as a ‘halo’.
A number of bright debris discs have been observed to have such
extended haloes (e.g. Kalas 2005; Fitzgerald et al. 2007; Kalas et al.
2013), which are most readily detectable at short wavelengths due to
the small sizes of the dust grains. In addition to these broad haloes,
it is also possible for unbound grains to contribute significantly to
the emission of the main disc if they are produced at a high enough
rate.

The strength of the radiation pressure force on a dust grain can
be quantified by the parameter β, which is the ratio of the radiation
pressure and the stellar gravity. Since both radiation pressure and
gravity fall off as r−2, the value of β is constant for a given dust grain
regardless of its distance from the central star, and we can think of
the effect of a non-zero β as being to modify the effective mass of the
star as seen by the dust grain to (1 − β)M∗. Any particle with a β > 1
will thus always be blown out, while dust grains originating from
a parent population on a circular orbit will be removed if β > 0.5.
Dust grains originating from eccentric orbits however can both be
removed at lower values of β, and remain bound at higher values,
depending on where around the eccentric orbit they are produced.

The overall effect is that dust grains with β � 0.5 are generally
not present in stable, bound orbits, but rather are produced in colli-
sions involving larger dust grains and then blown out. As a result,
the distribution of these small dust grains, which are most visible
in observations at shorter wavelengths, is strongly dependent on the
collision rate, and we can think of Fig. 13 as being a map of their
production sites. Since the collision-point strongly dominates the
collision rate it follows that it will also be the dominant site for the
production of blow-out grains.

In Fig. 15, we show the distribution of small dust grains produced
for a disc with σ v/vk = 0.3, and a uniform distribution of β be-
tween 0 and 0.99. In the upper image, we show the dust grains that
are unbound leaving the system on hyperbolic orbits. This image is
constructed by integrating the unbound grains forward from their
starting locations for 10 orbital periods of the progenitor. The dom-
inance of the collision-point in the production of the grains results
in the appearance of a broad ‘jet’ like structure emanating from
the collision-point in the direction of orbital motion. There is also
a secondary jet emanating from the anticollision line, since this is
the location with the second highest collision rate; however, this is
much fainter than the primary jet. These broad jets roughly span the
region between a parabolic orbit with pericentre at (1,0) or (−1,0),
the orbits expect for a grain with β = 0.5, and a straight line at
x = ±1, the path expected for a grain with β = 1.0.

The lower panel of Fig. 15 shows the dust grains that remain
bound for the same distribution of β as the upper panel. For the
bound grains, the image is constructed by randomising the mean
anomaly of the dust grains. These grains have a distribution that
is symmetric about the line of nodes (the x-axis), since they trace
complete eccentric orbits. The distribution of the bound grains is
also a lot more concentrated towards the inner region in which the
grains originate than the unbound grains as would be expected;
however, they still show a significantly longer tail extending out
in the negative x-direction away from the collision-point due to
the increased eccentricity of the dust grains. Note that there is
considerable uncertainty in the relative normalization between the
bound and unbound dust grains owing to uncertainties in the lifetime
of the bound grains. The distribution of large grains, which are the
parents of the small grains found in Fig. 15 can be found in Fig. 8(c).

Figure 15. The distribution of small dust grains for a disc produced by an
impact with σv/vk = 0.3. Top: unbound grains, bottom: bound grains. In
both images, β is uniformly distributed between 0 and 0.99. Note the zoomed
out scale in comparison with previous figures, the dashed box indicates the
region covered by earlier images. The corresponding distribution of large
grains can be found in Fig. 8(c).

The uniform distribution of β used in Fig. 15 is almost certainly
not realistic; however, the true distribution of β is heavily dependent
on the uncertain outcomes of high-velocity collisions between small
dust grains at the collision-point. We can use the results of the
uniform distribution to inform us as to the behaviour expected if we
change the distribution. If we weight the distribution towards low
values of β, the jet of unbound grains from the collision-point will
be denser towards the parabola centred at (1,0), while the bound
grains will be even more heavily concentrated towards the parent
disc. On the other hand, if we weight the distribution towards high
values of β the jet of unbound grains will be denser towards the
x = 1 line, while the tail of bound grains at large negative x will
become more prominent. If we allow values of β higher than 1, this
results in anomalous hyberbolae that curve away from the star at
their point of origin (Krivov, Löhne & Sremčević 2006), this would
broaden the jet to the right of the x = 1 line.

While the relative normalization between the bound and unbound
dust grains is rather uncertain, we can still make inferences about
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what would be seen in observations. By comparing the upper and
lower panels of Fig. 15, we can see that the density of the bound
grains falls by around four orders of magnitude along the negative
x-axis between the location of the progenitor ring and the edge of
the image. In contrast, the density of the jet of unbound grains falls
off much more slowly. As such, we can expect that even if the bound
grains dominate close to the parent ring there will be a distance at
which the unbound grains become dominant. In addition, both the
tail of bound grains and the jet of unbound grains lie mostly in the
upper-left quadrant, so whatever the normalization between the two
populations the halo will be concentrated in this region.

4.3 CO gas

Debris discs are generally thought of as gas-free systems; however,
a number of debris discs have now been observed to possess carbon
monoxide (CO) gas, such as Beta Pictoris (Roberge et al. 2000;
Troutman et al. 2011), 49 Ceti (Roberge et al. 2013) and HD 21997
(Kóspál et al. 2013). In some cases, this may be remnants of the
primordial gas from the protoplanetary stage. For Beta Pictoris in
particular however this does not seem to be the case as there are
stringent upper limits on the mass of hydrogen present (Freudling
et al. 1995; Lecavelier des Etangs et al. 2001) and it is instead
suggested that the CO is secondary gas produced by planetesimals
containing CO ice. Here, we are considering that the parent bodies
contain ∼1–10 per cent by mass of CO ice, as for Solar system
comets (though the exact value is unimportant for our model), and
that this can be released during collisions.

CO is photodissociated on fairly short time-scales by interstel-
lar ultraviolet radiation. Visser, van Dishoeck & Black (2009), for
example, find 120–170 yr for the lifetime of CO molecules in the
absence of shielding, depending on the radiation field used. At the
large orbital distances, where we are likely to find bodies contain-
ing substantial quantities of CO ice, this lifetime is shorter than the
orbital time-scale and so the distribution of CO will be strongly
influenced by the distribution of the production regions.

As a result of photodissociation, the distribution of CO will trace
the distribution of its production sites in the same way as the small,
blow-out, grains. However, here instead of being blown out from
the original orbits of the parent particles, the CO gas will continue
to follow the same orbit since it is minimally affected by radiation
pressure.

In Fig. 16, we implement the dissociation as a simple exponential
decay of the CO density as it moves away from the production
site (with the time-scale here being 1/10 of the progenitor orbital
period). As for the blow-out grains of Section 4.2, we may think
of the collision map of Fig. 13 as a map of the production sites.
This simple exponential decay assumes that CO gas is released
promptly after a destructive collision and that the lifetime of the
CO is constant.

As with the small dust grains of Section 4.2, the effect of the CO
being concentrated more strongly at the locations it is produced is
to enhance the asymmetry of the disc above that seen in the larger
debris fragments traced by Figs 8 and 11. The constant decay time
also has the effect that the CO reaches further around the disc at
smaller orbital distances, since the orbital period here is shorter. As
a result, the CO is concentrated slightly interior to the orbit of the
progenitor. Interestingly, CO reaching to smaller orbital distances
than dust is found in HD 21997 by Kóspál et al. (2013), where the
inner edge of the CO disc is at <26 au, while the inner edge of the
dust disc is at ∼55 au. As the CO in the HD 21997 disc is optically
thick; however, the decay times are likely too long for a similar

Figure 16. The distribution of CO for a disc produced by an impact with
σv/vk = 0.3 and with a CO decay time of 1/10 of the progenitor orbital
period.

effect to that described here to cause this difference in inner edge
distances.

In reality, there are effects that may not be captured in the simple
assumptions above. Although at smaller orbital distances, the orbital
period is shorter and so the CO reaches further around the orbit in
Fig. 16, the temperatures to which the debris is subjected will also
be higher. This can have the effect that any CO contained in large
debris fragments on these orbits outgases and is lost very early in the
disc lifetime such that at later times CO is absent from short orbits.
In addition, the photodissociation time-scale of 120–170 yr is that
in the absence of shielding, but self-shielding within the CO gas
can be important even at fairly low-column densities, significantly
increasing the photodissociation lifetime (e.g. Visser et al. 2009).
As the gas is then photodissociated and the density falls, so the self-
shielding decreases and the photodissociation will rate accelerate.
It is also possible that in addition to an initial burst of CO release
after destructive collisions, there may be a slower release of CO
from debris fragments that did not undergo catastrophic collisions,
but rather had cratering events that exposed new surfaces to space.
Such continued production would also have the effect of apparently
prolonging the CO lifetime. Despite these potential complications
however, the overall picture of CO being produced largely at sites
of highcollision rate and subsequently decaying as it moves around
the orbit is unchanged.

5 BETA PI CTO RI S

Having set out the theoretical basis for debris discs produced by
giant impacts at large distances from their host star, it is highly
desirable to have a comparison with a real system. We are fortunate
to have an appropriate system with which to compare in the young
(12 Myr; Zuckerman et al. 2001), nearby (19.44pc, Hipparcos),
A-star Beta Pictoris.

Beta Pictoris is a very well studied system and several complex
structures and asymmetries have been discovered in its edge-on disc.
At large distances from the star, the extent of the disc has been found
to be asymmetric, reaching 1450 au in the south-west extension but
1835 au in the north-east extension (Larwood & Kalas 2001). Closer
to the star the disc is observed to be warped (e.g. Golimowski et al.
2006). Most pertinent to our models, here are the observations of

MNRAS 440, 3757–3777 (2014)

 at U
niversity of C

am
bridge on O

ctober 2, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


3774 A. P. Jackson et al.

Figure 17. 11.7 μm image of Beta Pictoris (Fig. 1 d of Telesco et al. 2005).
The image has been rotated 58◦ counterclockwise with respect to the sky
position-angle; north-east is to the left and south-west is to the right. The
small circle at bottom right indicates the T-ReCS point-source FWHM. The
vertical solid line is at the star (centre) and the vertical dotted lines are at 52 au
from the star. The contours (in units of 0.01 mJy pixel−1) are 10, 17, 26, 36,
45, 56, 68, 80, 93, 108, 123, 140. The brightest (inner) colours correspond to
the highest numbered contour levels. Note that the star is heavily saturated
in this image. There is a strong left–right asymmetry, peaked at a separation
of 52 au from the star.

Telesco et al. (2005), which revealed a large brightness asymmetry
in the mid-infrared at a projected separation of about 50 au from
the star (see Fig. 17). New observations in the sub-mm with the
Atacama Large Millimetre Array (ALMA) by Dent et al. (2014)
also reveal a similar asymmetry in the sub-mm continuum and in
emission from CO gas.

Telesco et al. (2005) suggested two alternative hypotheses for the
origin of the prominent asymmetry in the mid-infrared, production
from larger planetesimals trapped in resonance with a planet (not
the planet Beta Pictoris b imaged by Lagrange et al. 2009, 2010,
rather one farther from the star), as studied in the context of Vega
by Wyatt (2003), or the very recent (∼50 yr ago) break up of an
∼100 km body. The main issue with the suggestion of collisional
break-up of a large asteroid/comet is the very short time-scale, and
thus the low likelihood of catching the system in its current state.
Here, we suggest that a larger impact event involving a planetary-
scale body avoids this problem since the asymmetry in the debris
disc produced persists for much longer. That is, the clump could be
the aftermath of a collision that occurred up to ∼1 Myr ago.

As we saw in Figs 8–11, if we look at a debris disc generated by a
giant impact edge on, with the collision-point to one side of the star,
the result is a large brightness asymmetry between the two sides of
the disc. In the context of Beta Pictoris, as the south-west side of the
disc is brighter in the mid-infrared the collision-point would be on
the south-west side. Although the projected separation of the clump
from the star is 52 au, this does not mean that the impact must
have occurred at 52 au from the star, rather this sets a minimum
orbital distance of 52 au since if the impact occurred further out
but not at the ansa of its orbit the collision-point could also appear
at 52 au. This is one of the key features of CO observations that
can be obtained with ALMA, as CO emission is line emission, and
it is thus possible to obtain velocity information. Having line-of-
sight velocity information gives access to the structure along the
line of sight and makes it possible to, for example, determine the
true orbital distance of the asymmetry. The ALMA observations of
Dent et al. (2014) reveal, amongst other things, that the true orbital
distance of the CO is ∼85 au.

Considering the orbital distance of ∼85 au from Dent et al.
(2014), the orbital period at this distance from Beta Pictoris is
590 years. If the mean lifetime of CO is ∼120–170 yr, this implies
that CO produced at the collision-point will have gone through at
least one decay time, and thus decayed by at least 63 per cent, over
the course of moving from the south-west side of the disc to the
north-east side. This does not automatically translate into a bright-

ness asymmetry of the same magnitude, since the CO will continue
to decay as it moves from the north-east side back to the south-west
side. Nonetheless, we can see how this leads to the expectation that
the asymmetry in CO should be larger than that in the larger parent
grains that dominate the emission at longer wavelengths (particu-
larly in the sub-mm).

In addition to considerations of CO, mid-infrared and mm-
emission, a giant impact model can also produce consistency with
the asymmetry at very large scales observed by Larwood & Kalas
(2001) in optical scattered light. This asymmetry is in the opposite
sense to the asymmetry at longer wavelengths, with the north-east
side of the disc observed to extend around 25 per cent further than
the south-west side. It is at these short wavelengths that the jet of
blow-out grains, we described in Section 4.2 will be most visible,
and if this jet is oriented in a north-easterly direction it would result
in the north-east side of the disc halo being brighter, and thus ob-
served to larger distances. This jet orientation requires that the giant
impact occurs at a larger distance from the star than 52 au, such that
the jet is at an angle to the line of sight, consistent with the ∼85 au
distance revealed by Dent et al. (2014). In addition, since Olofsson,
Liseau & Brandeker (2001) showed that the sense of orbital motion
in the disc is towards us in the south-west, this jet orientation re-
quires that the collision-point is closer to us along the line of sight
than the star.

In our giant impact model, the collision-point is stationary on
orbital time-scales, only moving on much longer time-scales as a
result of precession. As such if the clump in the Beta Pictoris disc
is indeed the result of giant impact it should be stationary. This is a
difference with a resonance model similar to that of Wyatt (2003),
and indeed to the original suggestion of Telesco et al. (2005), as in
both of those models the clump will move. In the case of the original
Telesco et al. (2005) model, it would move with the Keplerian
velocity at its orbital distance, while in the resonance model it
would move on the faster orbital time-scale of the interior planet
driving the resonance. Li et al. (2012) reimaged the mid-infrared
clump and found tentative evidence for motion. If confirmed this
would rule out a giant impact model, but at present the evidence is
inconclusive. Nonetheless, further observations over decade time-
scales will enable us to definitively either detect or rule out motion
of the clump, helping us to determine its origin.

We have not here attempted to conduct a full statistical modelling
of Beta Pictoris. Rather we have shown qualitatively that debris
released by a giant impact is broadly capable of reproducing the
large-scale asymmetries observed in the Beta Pictoris disc in the
mid-infrared by Telesco et al. (2005), in the CO/sub-mm by Dent
et al. (2014), and in scattered light by Larwood & Kalas (2001).

6 C O N C L U S I O N S

Planetary-scale, giant, impacts have occurred in the outer reaches
of our own Solar system, and it is not unreasonable to expect similar
impacts to occur in the outer reaches of other planetary systems.
These large impacts release substantial quantities of debris that will
go into orbit around the host star and produce an, initially, high
asymmetric disc.

The behaviour of this giant impact debris is governed by a set of
equations that we described in Section 2. The key result of these
equations is the existence of the collision-point, a fixed point in
space at the location at which the originating giant impact takes
place and through which all of the debris must pass. The collision-
point is of paramount importance in determining the appearance
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and evolution of the debris disc, and is what produces the strong
asymmetry in these discs.

We have studied the morphologies of debris discs generated by
giant impacts and shown how the character of the disc varies de-
pending on the mass of the progenitor body (and its orbital distance).
At the same orbital distance a debris disc produced by an impact
involving a more massive progenitor is broader both radially on
the side of the disc opposite the collision-point, and vertically. In
addition, a debris disc produced by an impact involving a more
massive progenitor is more strongly dominated by the collision-
point due to the effect that while all material must pass through the
collision-point, elsewhere the material is more dispersed than in a
disc originating from a less massive progenitor.

The lifetime of the asymmetry due to the collision-point is deter-
mined by precession caused by other bodies in the system, a typical
lifetime however is a few thousand orbits. The long orbital periods
at large distances from the parent star translates this into time-scales
of ∼1 Myr.

The eccentricity of the orbit of the progenitor body interacts with
the asymmetry present due to the collision-point. Depending on the
location of the impact around the orbit, this can enhance or reduce
the asymmetries in the brightness and radial extent of the disc at
the collision-point and opposite it. In general, the complexity of the
disc structure is increased for eccentric progenitors.

We have also studied the collisional evolution of the asymmet-
ric discs generated by giant impacts. In the second meaning of its
name, the collision-point dominates the collisional evolution of the
disc. As such, material whose distribution depends strongly on the
location at which it is produced, such as small dust grains that
are strongly influenced by radiation pressure, and CO, demonstrate
even stronger asymmetries, focused on the collision-point. In addi-
tion, the highly asymmetric debris disc produced by a giant impact
evolves much faster collisionally than an equivalent axisymmetric
disc. Nonetheless, for a disc that is detectable initially the expected
detectable lifetime is typically at least as long as the lifetime of the
asymmetry. As such it is reasonable to expect that we can observe
asymmetric discs resulting from impacts between Moon-size and
larger bodies at large distances (∼50 au) from their host star.

We applied our model of giant impact debris discs to the debris
disc around the star Beta Pictoris and demonstrated that it is capable
of broadly reproducing the asymmetry observed in the mid-infrared
by Telesco et al. (2005), in CO/sub-mm by Dent et al. (2014), and
in scattered light by Larwood & Kalas (2001). A more detailed
analysis would be required however to determine if this is the best
model for the disc, and if so what the system parameters are.

If debris discs generated by giant impacts are found in the outer
reaches of extrasolar planetary systems, for example, if this is shown
to be the best model for Beta Pictoris, this has important implications
for planet formation models. The occurrence of giant impacts could
imply that rocky/icy bodies routinely grow to large, planetary, sizes
at substantial distances from their host star.
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A P P E N D I X A : E QUAT I O N S F O R A R B I T R A RY
INITIAL I, � A N D ω

As described in Section 2, our equations can be applied to situations
in which non-zero initial values of I, � and ω are desired by appli-
cation of rotations to the resulting distributions. As this is quite a
common situation to which the equations would be applied, we give
below the appropriate transformation of θ and φ, and also equations
for I′, �′ and ω′ that incorporate the rotations directly, which might
in particular be convenient for some programming applications.

Moving into a frame in which I, �, ω �= 0 introduces a new
Cartesian basis, which would now be the preferred basis for the
calculations. This can be related easily to our original definition of
θ and φ by defining a new θ1 and φ1, which are spherical polar
angles defined relative to the Cartesian basis of the I, �, ω �= 0
frame. We can then relate θ , φ and θ1, φ1 by

cos(θ ) = Cθ1CI − Sθ1SISβ,

tan(φ) = Sθ1 (SβCICω − CβSω) + Cθ1SICω

Sθ1 (SβCISω + CβCω) + Cθ1SISω

, (A1)

where we define α = ω + f and β = φ1 − �.
For a′, e′ and f′, we can then simply use these definitions of θ and

φ in terms of θ1 and φ1 in the equations of Section 2, and obtain
the correct results while describing the kick velocity with respect
to the Cartesian basis of the I, �, ω �= 0 frame. Although they will
be calculated correctly I′, �′ and ω′ will however still be defined
relative to the orbit reference frame rather than the I, �, ω �= 0 frame.
The values in the I, �, ω �= 0 frame can of course be determined by
rotation of the resulting distributions, but for convenience, we give
equations for I′, �′ and ω′ in terms of θ1, φ1 that incorporate the
rotations directly as

cos(I ′) =
[
CI +

√
1 − e2

1 + eCf

(
�v

vk

)
Sθ1

(
CαSβ − SαCβCI

)]

×
(

h′2

h2

)−1/2

, (A2)

tan(�′)

=
S�SI +

√
1−e2

1+eCf

(
�v
vk

)[
Cθ1 (S�Cα + C�SαCI ) − Sθ1Cφ1SISα

]
C�SI +

√
1−e2

1+eCf

(
�v
vk

)[
Cθ1 (C�Cα − S�SαCI ) − Sθ1Cφ1SISα

] ,

(A3)

and

sin(ω′ + f ′) = SαSI

SI ′
,

cos(ω′ + f ′) = 1

C�′

(
C�Cα − S�SαCI + S�′Sα

SICI ′

SI ′

)
. (A4)

Note that these equations do not include any mechanism preventing
the inclination being negative.

A P P E N D I X B : C O M PA R I S O N TO T H E G AU S S
P L A N E TA RY E QUAT I O N S

For simplicity, we will only give the example of a purely radial kick
(θ = π/2, φ = f) here, but the same logic applies to kicks in other
directions. Let us first consider the change in the semimajor axis.
For a purely radial kick, equation (4) simplifies to

a

a′ = 1 −
(

�v

vk

)2

− 2√
1 − e2

(
�v

vk

)
eSf . (B1)

Now, let us consider only a small change in the semimajor axis,
such that a′ = a + �a and �v/vk is also small, allowing us to
neglect the term in �v2. The above then becomes

�a

a′ = 2√
1 − e2

(
�v

vk

)
eSf . (B2)

We can also think of �v as a change in the specific momentum of
the particle, and allow this to be introduced over a small time �t by
a force R, rather than exactly instantaneously. So we can write �v

as R�t, and equation (B2) becomes

1

a′
�a

�t
= 2a1/2√

G(M + m)(1 − e2)
eRSf , (B3)

where we have also substituted vk = √
G(M + m)/a. If we now

take the limit as �a and �t become infinitesimally small, and note
that a′ = a + da ≈ a, this becomes

da

dt
= 2a3/2√

G(M + m)(1 − e2)
eRSf , (B4)

which is simply Gauss’ equation for the rate of change of the semi-
major axis under the action of a radial force, as expressed by e.g.
Burns (1976) or Murray & Dermott (1999).

The eccentricity can be treated in exactly the same way. First,
note that in the case of a purely radial kick h′2/h2 = 1, and so we
can write equation (6) as

e′2 = 1 − (1 − e2)

(
1 −

(
�v

vk

)2

− 2√
1 − e2

(
�v

vk

)
eSf

)
.

(B5)

Following exactly the same procedure of considering a small change
e′ = e + �e, with �v = R�t and neglecting non-linear terms in
small quantities, we obtain

�e

�t
=

√
a(1 − e2)

G(M + m)
RSf , (B6)

which again taking the limit as �e and �t become infinitesimally
small becomes

de

dt
=

√
a(1 − e2)

G(M + m)
RSf , (B7)

Gauss’ equation for the rate of change of the eccentricity.
We can thus see that in the case of a small change, which is the

assumption under which the Gauss planetary equations are derived,
we can relate the kick equations directly to the planetary equations.
The differences between the kick formalism and the planetary equa-
tions become important when we consider large changes for which
the non-linear terms are not negligible. Perhaps the most obvious
example of a simple difference and its importance is that if we
consider a three-dimensional force F = Rêr + T êT + N êN , with
êN the basis vector normal to the orbit, and êT in the plane of the
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orbit perpendicular to the radial, the full planetary equation for the
semimajor axis is

da

dt
= 2a3/2√

G(M + m)(1 − e2)

[
eRSf + T (1 + eCf )

]
. (B8)

The lack of a êN term illustrates that a force perpendicular to the
plane of the orbit cannot change the semimajor axis, whereas in
the kick formalism a perpendicular kick can change the semimajor
axis (though the term linear in �v is zero). We can understand this
by considering that to induce a large velocity kick in the vertical
we need to have a large force act (or do so for a longer time) and

the direction of that force must be constant. In the formalism of
the planetary equations, the definition of êN means that, if we start
applying a force in the êN direction the plane of the orbit will begin
to rotate, and thus so will the definition of êN . So if we want to
induce a larger velocity kick in the vertical, the definition of the
direction of the force will change over the time of application and
gain an apparently radial component.
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