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ABSTRACT

White dwarf atmospheres are frequently polluted by material from their own planetary systems.
Absorption features from Ca, Mg, Fe and other elements can provide unique insights into the
provenance of this exoplanetary material, with their relative abundances being used to infer
accretion of material with core- or mantle-like composition. Across the population of white
dwarfs, the distribution of compositions reveals the prevalence of geological and collisional
processing across exoplanetary systems. By predicting the distribution of compositions in three
evolutionary scenarios, this work assesses whether they can explain current observations. We
consider evolution in an asteroid belt analog, in which collisions between planetary bodies that
formed an iron core lead to core- or mantle-rich fragments. We also consider layer-by-layer
accretion of individual bodies, such that the apparent composition of atmospheric pollution
changes during the accretion of a single body. Finally, we consider that compositional spread
is due to random noise. We find that the distribution of Ca, Fe and Mg in a sample of 202 cool
DZs is consistent with the random noise scenario, although 7 individual systems show strong
evidence of core-mantle differentiation from additional elements and/or low noise levels.
Future surveys which detect multiple elements in each of a few hundred white dwarfs, with
well understood biases, have the potential to confidently distinguish between the three models.

Key words: accretion, accretion discs — planets and satellites: composition — white dwarfs —
planets and satellites: dynamical evolution and stability — methods: statistical — minor planets,
asteroids: general

1 INTRODUCTION

The ruins of ancient planetary systems pollute the atmospheres of
many white dwarfs. Between 27% and 50% of young white dwarfs
have heavy elements in their atmospheres (Zuckerman et al. 2010;
Koester et al. 2014). The detection of such elements is typically
attributed to the recent accretion of planetary material that has
survived into the post-main sequence phase of its host star (e.g., Jura
2003; Zuckerman et al. 2010; Jura & Young 2014). White dwarfs
polluted by such material offer a unique opportunity to examine the
composition of planetary building blocks, and hence to understand
the key processes which govern their formation and evolution. A
key process is core—mantle differentiation: the formation of a Fe-
rich core and an Fe-poor mantle.

The study of metal abundances in white dwarfs has focussed on
modelling systems one at a time, revealing geological histories at the
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individual level. For example, the Fe-rich pollution of PG 0843+516
is suggestive of a body which underwent core—mantle differentiation
and then suffered a catastrophic loss of much of its mantle (Génsicke
etal. 2012; Xu et al. 2019). Other individual polluted white dwarfs
record the accretion of water-rich bodies (e.g., Farihi et al. 2013),
crustal material (e.g., Zuckerman et al. 2011), material which lost
volatile elements during a magma ocean phase (Harrison et al.
2021b) and material potentially derived from icy exomoons (Klein
et al. 2021; Doyle et al. 2021).

Individual systems can provide insight into which evolution-
ary pathways may operate in exoplanetary systems, but in order
to determine the relative importance of these pathways, population
level analysis is necessary. This work performs such a population
level analysis, and shows that it is already possible to extract re-
sults from current white dwarf samples. The best known samples
with relevance to metal pollution are the cool DZ sample (Hollands
et al. 2017), the He-rich population of Coutu et al. (2019) and the
40 pc (Tremblay et al. 2020; McCleery et al. 2020; O’Brien et al.
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2023, 2024) and 100 pc samples (Jiménez-Esteban et al. 2018; Gen-
tile Fusillo et al. 2019; Kilic et al. 2020). Ongoing surveys such as
the Sloan Digital Sky Survey (SDSS) and the Dark Energy Spectro-
scopic Instrument (DESI) continue to identify new polluted white
dwarfs (Manser et al. 2024). Such ground-based spectroscopic fol-
low up of white dwarfs identified with Gaia should yield more than
1,000 systems amenable to detailed abundance analysis, with the up-
coming 4MOST and WEAVE-WD surveys providing spectroscopy
for upwards of 100,000 white dwarfs (Chiappini et al. 2019; Gaen-
sicke et al. 2019). This will dramatically increase the sample sizes
available to population studies.

Such large populations of polluted white dwarfs will allow us
to learn about the physical processes which are generally important
across all exoplanetary systems, the signatures of which may be
identifiable in sufficiently large samples. The composition of plan-
etary material in the atmospheres of white dwarfs can tell us about
the geological process of iron core formation, but only if material
from the iron-core and silicate mantle are separated. This separa-
tion can occur due to violent collisions that break-up the planetary
bodies into small fragments or during the accretion process itself,
where bodies may be accreted layer-by-layer.

Collisional evolution is a key process in the early Solar System.
The composition of terrestrial planets can be altered if they suffer
sufficient collisional processing (Marcus et al. 2009; Stewart &
Leinhardt 2012; Carter et al. 2015), a scenario which may explain
Mercury’s high density (Benz et al. 1988; Benz et al. 2007) and
the formation of the Moon (Hartmann & Davis 1975; Cameron &
Ward 1976). Collisional evolution has shaped the size distribution
of the asteroid belt and Kuiper belt (Bottke et al. 2005; Kenyon
& Bromley 2004; Holsapple 2022). Similarly, debris discs in other
planetary systems are governed by collisional processes (Krivov
et al. 2006; Thébault & Augereau 2007), as evidenced by ALMA
observations (Marino 2021; Imaz Blanco et al. 2023). Bodies from
these collisionally evolved structures may survive into the post-main
sequence phase, ultimately supplying the central white dwarf with
pollution (Bonsor et al. 2011).

The exact manner in which the accretion of planetary bodies
onto white dwarfs proceeds remains poorly understood. Any process
in which a body is not fully accreted at once, but instead is accreted
layer-by-layer over multiple sinking timescales, has the potential
to separate the core and mantle material. One such process was
suggested by Brouwers et al. (2023), and is referred to in this work
as ‘orbit-by-orbit’ accretion. Orbit-by-orbit accretion is based on
the commonly suggested scenario that accreted material is derived
from a tidally disrupted asteroid (Debes & Sigurdsson 2002; Jura
2003; Zuckerman et al. 2007; Klein et al. 2010; Dufour et al. 2010;
Veras et al. 2014; Malamud & Perets 2020b; Malamud et al. 2021;
Veras 2021). Material from different locations in the asteroid may be
spread across different orbits according to orbital energy, a process
that is also seen in SPH simulations (Malamud & Perets 2020a).
This material may then be accreted orbit-by-orbit. If the disrupted
asteroid was core—mantle differentiated, this leads to asynchronous
accretion of core and mantle.

Collisional evolution and orbit-by-orbit accretion predict dif-
ferent distributions for the fraction of accreted material which is
core-like, meaning that these processes could be distinguished given
a sufficiently large sample of polluted white dwarfs. This would pro-
vide valuable insight into which processes are important in driving
the evolution of pollutants.

The present study predicts the number of white dwarfs required
to place constraints on the process(es) dominating the evolutionary
history of pollutants. In order to make this prediction, we outline a

Table 1. The parameters used to generate synthetic populations of white
dwarfs with H- and He-dominated atmospheres. A uniform fragment core
number fraction distribution is also used in Sections 2.6, 3.1 and 3.2 for
testing purposes only.

Parameter Distribution
H-dominated He-dominated
Tef 40 pc DAs Hollands et al. (2017)
log(g) 40 pc DAs Hollands et al. (2017)

Uniform across 958 stars
Log-uniform, 10935-1079-25 AU
Collisional, Orbit-by-orbit or Delta

Uniform, 0-20 Myr
Uniform, 0-10 Myr
Equation 1

Initial Nebular Composition
Pollutant Formation Distance
Fragment Core Fraction, f.

Time Since Accretion, ¢ N/A
Accretion Event Lifetime, fevent N/A
Pollution Level, A

method in Section 2 that synthesises a population of polluted white
dwarfs. Our synthesis method takes into account random noise, and
also detection bias caused by the inability to detect metals which are
only present in small quantities. In Section 3, we use this pipeline
to identify the impact of these biases on our interpretation of the
population of exoplanetary bodies accreted by white dwarfs. We
also address the important question of how many polluted white
dwarfs are necessary to distinguish samples in which the collisional
and orbit-by-orbit scenarios are dominant (when the underlying
pollutant population is differentiated), and also to distinguish these
cases from a control case in which pollutants are not core—mantle
differentiated. We then assess whether this can already be achieved
for the cool DZ sample of Hollands et al. (2017). We discuss the
implications for the field in Section 4 and summarise in Section 5.

2 METHODS

Populations of polluted white dwarfs can reveal the underlying
mechanisms that control the evolution of exoplanetary bodies, as
long as we can relate the observed compositional distribution to the
true distribution. We focus on trends in the core- or mantle-like na-
ture of accreted material, and relate these trends to those predicted
by three different evolutionary processes.

We aim to compare a real sample of white dwarfs against
a synthetic sample, and test them for consistency. To do this, we
introduce a pipeline which generates synthetic white dwarfs. The
stages of this pipeline are illustrated in Figure 1, and described in
further detail in the following subsections.

2.1 Generating a synthetic population

Our aim is to produce a population of white dwarfs with a range of
metal abundances in their atmospheres at the time of observation.
The metal abundances result from the accretion of a realistic range
of planetesimals, accreted by white dwarfs in different exoplanetary
systems. In order to do this, we use a simple framework to predict
the composition of typical planetesimals, and assume that white
dwarfs sample from these at random. We consider only variations
in the dominant mechanisms controlling planetesimal composition
and structure: initial nebular composition and core-mantle differ-
entiation. We ignore the volatile component of planetesimals for the
purpose of this work.

A sample of synthetic polluted white dwarfs is generated by
randomly sampling the parameters that describe the white dwarf, the
material it has accreted, and the timing of the accretion event itself.
We then calculate the resulting atmospheric abundances of metals
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Figure 1. Flowchart of the pipeline for a single synthetic white dwarf as described in Section 2. The first stage is the random generation of the various
parameters describing the white dwarf itself, the accreted material, and the accretion process. From this, we calculate the abundances of elements including
Ca and Fe in the white dwarf’s atmosphere (see Section 2.1). Hx refers to the dominant element in the atmosphere, either H or He. We then calculate mock
elemental detections for the resulting white dwarf (see Section 2.3). Detection thresholds and random noise are applied, resulting in a set of detected elemental
abundances which, in general, differ from those calculated in the previous step. Elements can also fail to be detected. This process introduces systematic bias.
Finally, we use a simple algorithm (see Section 2.4) for parameter retrieval. This is repeated for a large population of synthetic white dwarfs. Statistical trends
extracted from the population deviate from the input prescriptions due to observational bias, random noise, and imperfect modelling.

including Ca, Fe, Mg, Al, Ti, Ni and Cr, which are the elements
used in this analysis. The forward model used is the same as that of
Harrison et al. (2018, 2021a), with updated sinking timescales and
crustal material omitted. In this model, the composition of core-
and mantle-like material is based on that of Earth, but with relative
metal abundances scaled according to nebular composition (and,
close to the star, volatile depletion). The variables we sample are as
follows.

2.1.1 White dwarf parameters

For the white dwarf, the quantities of interest are the effective tem-
perature, T, the surface gravity, log(g), and the dominant com-
ponent of the atmosphere (H or He, which we refer to as Hx for
convenience). These variables control the timescales over which
elements sink in the white dwarf’s atmosphere.

For H-dominated white dwarfs, the values of T.g and
log(g) are randomly sampled from a distribution generated from
Teg/log(g) values from all DAs in the 40pc sample (Tremblay et al.
2020; McCleery et al. 2020; O’Brien et al. 2023, 2024) as recorded
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in the Montreal White Dwarf Database! (MWDD, Dufour et al.
2017). These values are placed into bins (of width 1800 K or 0.16
dex respectively), allowing the probability distribution to be es-
timated and interpolated. The resulting synthetic Teg and log(g)
distributions closely mimic the real distributions without directly
replicating any particular real system. We choose the 40 pc sample
as it is almost volume complete (~*96% at time of data extraction),
and so is as unbiased as possible. We use the default values of Teg
and log(g) in the MWDD, which may differ from any given individ-
ual source for any given system, but we only require representative
distributions so do not expect this to affect our results significantly.

For He-dominated systems, we repeat this process with dis-
tributions based on the cool DZ sample of Hollands et al. (2017),
using updated values of T and log(g) found by Blouin (2020)
with bin widths of 500K and 0.2 dex.

2.1.2  Initial nebular composition

We assume that pollutants form from the same material as their host
star, such that their initial composition matches the initial nebular

! https://www.montrealwhitedwarfdatabase.org/, accessed

01/08/2022
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composition. We use a sample of nearby F, G and K-type stars
from Brewer et al. (2016) as a proxy for the probable range of
compositions, and assume each of these 958 compositions is equally
likely.

2.1.3  Volatile depletion/Formation distance

We reduce the quantity of volatile elements in the initial nebular
composition according to the ambient temperature during formation
in the protoplanetary disc. This process is included for the sake of
mimicking the model of Harrison et al. (2018, 2021a), but has
minimal effect for the purposes of this paper, so we do not discuss
it further.

2.1.4  Fragment core fraction

Fragment core fraction (f;) is the key variable representing core—
mantle differentiation. It accounts for the possibility that any given
accreted body is actually a fragment from a larger parent body
which has differentiated into a separate core and mantle during
formation. Unlike the parent body, the fragment can be composed
of an arbitrary combination of core and mantle. f; refers to the core
fraction of this accreted fragment, quantified in terms of number
(i.e., moles) rather than by weight, and can range from O to 1.
Higher values of f. cause enrichment in siderophile elements (Fe,
Ni, Cr) and depletion in lithophile elements (Ca, Mg, Al, Ti, Na,
0).

We do not necessarily assume that core formation always oc-
curs. The signature of pristine, undifferentiated material can be
replicated by mixing the core and mantle components in an Earth-
like proportion (with fe ~ 0.17).

The distribution of f; is a key variable in this work, and is
described in more detail in Section 2.2.

2.1.5 Accretion phase

The phase of accretion is crucial because the differential sinking
of elements in white dwarf atmospheres distorts what is observed
from what was actually accreted, and this effect depends on when
the system is observed. We use two variables to describe the ac-
cretion phase: the time since accretion began, ¢, and the accre-
tion event lifetime, fevent. Accretion starts at ¢ = 0, and proceeds
through three phases. During the first phase (called the ‘build-up’
or ‘increasing’ phase), the composition of atmospheric pollution
closely matches the accreted material. If accretion proceeds for a
few sinking timescales, the system reaches ‘steady state’, in which
all elements are in accretion-diffusion equilibrium. In the steady
state phase, elements which sink rapidly through the atmosphere
are artificially depleted relative to other elements. Accretion ends at
t = tevent, after which point the system is in the ‘declining’ or ‘de-
creasing’ phase. If the system is observed in this phase (¢ > fevent),
the effects of differential sinking can become highly exaggerated.

For H-dominated white dwarfs, sinking timescales are typi-
cally short enough that we can safely assume steady state accretion.
We therefore fix the parameters of ¢ and fevent to arbitrary values
corresponding to steady state.

For He-dominated white dwarfs, we assume that ¢ is uni-
formly distributed between 0-20 Myr, and that feyent iS uniformly
distributed between 0-10 Myr. The possible range of feyen iS not
well constrained in the literature. Veras & Heng (2020) find that
this timescale can range from less than a year to about 1Myr,

depending on the parameters of their disc models. Other estimates
range from 20 yr (Wyatt et al. 2014) to hundreds of kyr (e.g, Rafikov
2011; Girven et al. 2012; Buchan 2023) to ~Myr timescales (e.g.,
Cunningham et al. 2021). Our range spans these possibilities. Our ¢
distribution approximates the timescales over which pollution could
plausibly be detected, given our feyep¢ distribution.

2.1.6  Pollution level

The pollution level, 4, acts as a proxy for the total mass of accreted
material. We define it as the quantity of atmospheric pollution rela-
tive to Hx, expressed on a log (base 10) scale such that it is always
negative. Systems which have highly negative values of A are only
lightly polluted, and their metal abundances may be too low to be
detected. Systems with higher (i.e., less negative) values of A are as-
sumed to be rarer. The true A distribution is unknown, so we assume
a simple linear distribution P(1) o A+ ¢, where P is the probability
density and c is a constant. We introduce two free parameters, a
and b, which represent the minimum and maximum allowed val-
ues of A respectively. The requirement that P(A) is normalised and
continuous at A = b gives P(Q) in terms of a and b:

2b-2) .
, ifa<a<b
P() = { (@b M
0, otherwise.
We set a = —12. This value is chosen primarily to avoid simu-

lating large numbers of systems whose pollution cannot be detected,
and has limited physical meaning. We set b = —3 (roughly equal to
the most polluted white dwarfs), except when mimicking the cool
DZs, in which case we calibrate the value of b to —5.

For He-dominated systems, the pollution level in principle af-
fects the sinking timescales, which in turn affects the pollution level.
Finding a self-consistent solution proved non-trivial. We neglect this
effect because, relative to Teg and log(g), pollution level only alters
relative sinking timescales by a small amount.

The pollution level, 4, is sampled independently from ¢ and
fevent, SO it is possible for the pollution level to be large while also
having ¢ > feyent. Physically, this means that the system is in the
declining phase, and yet there is still a high level of pollution, poten-
tially implying unrealistically large amounts of accreted material.
We correct these cases by reducing the pollution level according
to the expected exponential loss of material which follows the end
of accretion. We calculate a correction factor equal to lnt(q(t)%’
where 7¢, is the sinking timescale of Ca, and subtract this from
the pollution level. This correction factor is applied to all white
dwarfs in the declining phase of accretion, but only has a significant
influence on those with high accretion rates long after accretion has
finished.

2.2 The distribution of fragment core fraction

This work is based on the key premise that the distribution of core
fractions, fe, of the fragments found in the atmospheres of white
dwarfs differs according to the evolution of these fragments prior to
accretion. We consider three different evolutionary models, and their
corresponding f; distributions, which are illustrated in Figure 2.

2.2.1 Collisional

The ‘Collisional’ distribution represents the model in which colli-
sional evolution dominates the evolution of an asteroid or planetesi-
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mal belt. As core material is generally stronger and found at greater
depth than mantle material, collisional evolution affects this mate-
rial differently. Gentle collisions chip away at mantles, whilst highly
disruptive collisions lead to the merger of iron cores (Marcus et al.
2009). Thus, a population of planetary bodies that start with the
same initial f, will, after many years of collisional evolution, con-
tain planetesimals with a wide range of core fractions (e.g., Carter
et al. 2015; Bonsor et al. 2020).

For this work, the collisional distribution is taken from N-body
simulations of 100,000 planetesimals as presented by Bonsor et al.
(2020), based on Carter et al. (2015). Each planetesimal has an
initial core mass fraction of 0.35 (corresponding to fe ~ 0.18),
but as planetesimals collide they produce fragments with differing
core fractions. The N-body simulations include prescriptions for
multiple collision types, including hit and run, perfect mergers, and
partial accretion. The fate of core or mantle material is tracked
following each collision. Material that falls below the resolution
limit (which is primarily mantle) is assumed to accrete as dust on to
the larger bodies. The simulations in Carter et al. (2015) are highly
collisional, with multiple collisions per body. The final distribution
has a single peak near the initial f., but with significant deviation
due to collisional processing.

2.2.2  Orbit-by-orbit

A differentiated body passing within the Roche radius of the white
dwarf experiences tidal disruption and forms a disc. The disrupted
body is unlikely to be accreted within a single sinking timescale, but
rather over a significantly longer time period. Following Brouwers
et al. (2023), we consider the accretion of a single disrupted plane-
tary body to start with the innermost orbit of the tidal disc, before
proceeding ‘orbit-by-orbit’ to the outermost orbit. The Orbit-by-
orbit distribution mimics the accretion of this disrupted material on
the assumption that, at any moment, we don’t know which orbit the
white dwarf is sampling material from, so it is effectively random.

We assume that the disrupted rocky asteroid has a core mass
fraction of 0.35 (corresponding to fi ~ 0.18). The innermost and
outermost orbits consist entirely of mantle material, because the
parts of the asteroid closest to and furthest from the white dwarf
at the point of disruption are pure mantle. Intermediate orbits host
both core and mantle material. It is assumed that no material is
ejected from the system, which is true for sufficiently small asteroids
(< 100 km for a 10 AU semi-major axis orbit, Brouwers et al.
2023). Material is accreted orbit-by-orbit. leading to asynchronous
accretion of the core and mantle. The resulting f. distribution is
determined by geometry. Consider dividing the disrupted asteroid
into slices perpendicular to the axis joining the white dwarf and the
asteroid. Let x be the distance along this axis, with the origin at the
centre of the asteroid. The volume of each slice is given by

3 3
X5 — X
2 1) )

V=nr (xz—xl)Rz— 3

where V is volume, R is the asteroid radius, and the slice is bounded
by x1 and x,. A similar calculation is performed to find the volume
of core in each slice. The ratio of these volumes corresponds to one
fc value, which is weighted (by volume) and binned to generate the
distribution in Figure 2. The pure mantle material in the innermost
and outermost orbits causes a spike at f; = 0, and the maximum f;
is given by the core fraction in a slice at x = 0.

MNRAS 000, 1-18 (2023)
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Figure 2. Illustration of the three fragment core fraction, f;, distributions
used in this work. Each distribution corresponds to a different accretion
model, which we aim to ultimately disentangle by estimating the f; for a
large number of synthetic white dwarfs. For details, see Section 2.2.

2.2.3 Delta

The ‘Delta’ distribution represents a control case, in which no core-
mantle differentiation has taken place, and consequently all accreted
fragments have the same f; of 0.17. This is an approximately Earth-
like value, which we assume is a good proxy for planetesimal core
fraction at the time of formation. The value of f. used here differs
slightly from the other cases, but this difference is not significant
(see Section 4.5.9). This distribution could also correspond to dif-
ferentiated material which has experienced minimal collisional (or
other) processing since formation. This is observationally indistin-
guishable from undifferentiated material.

2.2.4  Distinguishing features

The exact shapes of the collisional and orbit-by-orbit f; distributions
are influenced by a number of assumptions and free parameters
(which we discuss further in Section 4.5.9). However, we expect
the key distinguishing features to be robust. The first feature is
a significant tail of core-rich material in the case of collisional
disruptions. The second is the bimodal shape of the orbit-by-orbit
distribution, which contrasts with the single peak of the collisional
distribution. These features are illustrated in Figure 2.

2.3 Observing the synthetic population

After generating a synthetic white dwarf, and using our forward
model to calculate its "true" atmospheric metal abundances, the
next step is to mimic the defected abundances. Detected elemental
abundances inevitably differ from true abundances due to multi-
ple factors. Spectroscopic observations of white dwarfs from HST,
SDSS or other facilities are used to identify absorption features from
metals in the white dwarf atmosphere. The presence and strength of
these features depends on the wavelength range used, with narrower
and smaller features easier to identify in higher resolution spectra.
However, not all elements present will necessarily be identified,
typically due to a lack of strong lines in the wavelength range used,
or because lines are hidden below the detection threshold.

The abundance of an element is quantified using the equivalent
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widths (EW) of its absorption lines via atmospheric modelling. The
resulting abundance estimates come with associated uncertainties.
We assume this uncertainty is purely statistical, and so we mimic
it by adding random noise to the synthetic elemental abundances.
We determine the detected abundance by randomly sampling from
a normal distribution whose mean is the true abundance and whose
standard deviation is a free parameter. We assume errors are Gaus-
sian, symmetrical and the same for each element. This is a simplifi-
cation: errors depend on many factors, such as the number of lines
which are detected and the accuracy of line lists, which in general
will differ for each element. We also assume the errors on each ele-
ment are independent (i.e., uncorrelated). In reality, correlations are
likely introduced during atmospheric modelling. We discuss these
assumptions further in Section 4.5.7.

We also mimic the non-detection of elements with low abun-
dances. For each element, we determine the minimum detectable
abundance as a function of white dwarf temperature (see section
2.3.1 for details). Elements remain undetected if their abundance is
below this detection threshold.

2.3.1 Detection Thresholds

Our detection thresholds for H-dominated white dwarfs, illustrated
in Figure A1, were calculated by approximating the minimum de-
tectable abundance as a function of temperature for each element.
Firstly, a high resolution (R ~ 40, 000) spectrum was simulated at
a signal-to-noise ratio of 30. This corresponds to telescopes and in-
struments which are commonly used to study polluted white dwarfs,
such as KECK/HIRES, Magellan/MIKE and VLT/UVES. By artifi-
cially inserting spectral lines, the minimum equivalent width (EW)
of the Ca 1 K line at 3934 A that could be detected to > 3¢~ con-
fidence was estimated to be 14 mA . This EW was converted to a
Ca/H abundance ratio using data from from Table 1 in Zuckerman
et al. (2003). This table lists the equivalent width of the Ca n K
line in a sample of DA white dwarfs, along with the inferred Ca
abundance and the effective temperature. This process was repeated
for the five DAs in Rogers et al. (2024) by scaling the abundances
assuming we are in the linear curve of growth regime. We calculate
the Ca abundance that corresponds to 14 mA EW as a function
of effective temperature, and fit a line of best fit to these points.
This line is adopted as the detection threshold for Ca in DAs, and is
shown in the top left panel of Figure A1. It corresponds to a model in
which high resolution spectrographs are used, and a signal-to-noise
ratio of 30 is targeted.

The detection thresholds for elements other than Ca were cal-
culated by offsetting the abundance by an amount that maintains an
EW of 14 mA for a typical H-dominated white dwarf in a sample
taken from Rogers et al. (2024) (GaiaJO006+2858). In principle,
these offsets might be affected by temperature. In practise the con-
stant offset appears to match data from real DAs reasonably well, as
shown in Figure Al.

Our detection thresholds for He-dominated white dwarfs, il-
lustrated in Figure A2, were calibrated by eye to match the real
detection thresholds in the sample of cool DZs from Hollands et al.
(2017).

Throughout this work, we allow the random noise to vary while
detection thresholds remain fixed. In principle, however, the detec-
tion thresholds should be linked with the size of the random errors,
as both of these are affected by instrument resolution. Higher reso-
lution tends to lead to smaller errors, and less restrictive detection
thresholds.

2.4 Parameter Retrieval

The final stage of the pipeline is to consider how the detected el-
emental abundances would be modelled in terms of the formation
history of the pollutant, and compare this against the original pa-
rameters used to describe the accreted planetesimals. The property
we are most interested in is f, but we must also consider the initial
stellar composition and the phase of accretion in order to estimate
fc. Our approach reuses the key calculations of Harrison et al.
(2018), Harrison et al. (2021a) and Buchan et al. (2022), but sim-
plified and approximated for computational feasibility. We do not
perform parameter retrieval on He-dominated white dwarfs due to
their additional complexity (see Section 2.4.1).

2.4.1 Phase of accretion

In any interpretation of white dwarf pollution, it is crucial to take
the (unknown) accretion phase of the system into account because
this changes the inferred abundance of every element in the accreted
material. We can reasonably assume that H-dominated white dwarfs
are in steady state (due to their typically short sinking timescales).
In this case, we correct for differential sinking by weighting each
abundance by the inverse of its sinking timescale, and proceed
using these corrected abundances. For He-dominated white dwarfs,
steady state cannot be safely assumed, and we cannot determine
the accretion phase because it is degenerate with the initial nebular
composition. To disentangle these variables, a more sophisticated,
and computationally demanding, model is required (e.g., that of
Buchan et al. 2022 or Swan et al. 2023).

2.4.2  Determining initial nebular composition

The initial composition from which the pollutant formed is assumed
to match one of 958 real stars, as described in Section 2.1.2. We fit
the initial nebular composition by determining which of these 958
real stars best matches the synthetic detected metal abundances. We
adopt the composition of that star as the initial nebular composition.

We determine the degree of (mis)match between a real star and
a set of synthetic abundances by comparing the relative abundances
of Al, Ti, Ca and Mg. These elements are chosen because, in our
model, the only process which significantly affects their relative
abundances is differential sinking. We should therefore be able to
take the abundances of these elements from a synthetic detected
system, scale them according to their sinking timescales to undo
the effects of differential sinking, and recover their abundances in
the initial nebula. In principle, these recovered abundances should
exactly match one of the 958 real stars. For each of the 958 real
stars, we calculate the mismatch, M, as

1
M = Z max (R(X),m)—l, (3)
X=Ti,Ca,Mg
in which max(a, b) is the largest value out of @ and b, and
XsAl.Tap
R(X) = =224l 4
(X) X ALty “

where X is the abundance of metal X in the synthetic system, X is
the abundance of X in the real star, Tx is the sinking timescale of X
in the synthetic system, and Al is chosen as an arbitrary baseline. If
the synthetic abundances match the real abundances perfectly, then
R =1 for all elements and the mismatch M is zero. We identify
the star which minimises M, and if there are multiple stars which
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share the joint lowest mismatch, we propagate all their compositions
through the retrieval and return multiple values for f., which we
assume to be equally likely.

2.4.3  Determining fragment core fraction

We scale the detected Ca/Fe ratio to compensate for the initial neb-
ular composition determined in Section 2.4.2. We use this adjusted
ratio to analytically calculate f., assuming Earth-like core and man-
tle compositions.

If Ca and/or Fe are not present, we use the following ratios
instead, in priority order: Mg/Fe, Al/Fe, Ti/Fe, Ca/Ni, Mg/Ni, Al/Ni,
Ti/Ni, Ca/Cr, Mg/Cr, Al/Cr, Ti/Cr.

2.5 Assessing the consistency of different distributions

For a sample of synthetic H-dominated systems, the key output from
the parameter retrieval stage of the pipelineis a f; distribution across
the whole sample. In order to determine whether this distribution
is statistically distinguishable from another distribution (e.g., a real
fc distribution), we perform a two-sample Kolmogorov—Smirnov
(KS) test. The KS test proceeds by calculating

D =max(|C; - C3)), ()

where C| and C, are the f. distributions expressed as cumulative
distributions, and D can be visualised as the maximum vertical dis-
tance between them. An associated p-value can also be calculated to
test the null hypothesis that the two samples are drawn from the same
underlying distribution. If the p-value is lower than some threshold
a, the null hypothesis is rejected and the samples are deemed to be
distinguishable. We set @ = 0.05. Whilst this threshold is commonly
used, it is ultimately arbitrary. We perform this test multiple times to
calculate the probability that two populations can be distinguished
by drawing samples from them. We call this probability P(X # Y),
where X and Y are the underlying distributions.

For synthetic He-dominated samples, we do not perform pa-
rameter retrieval, and so the key outputs are the distributions of
detected abundances for key elements. We use a Cramér test, with
a phiCramer kernel (Baringhaus & Franz 2004), to quantify the
consistency of these distributions with real equivalents. This test
functions similarly to a KS test, but is multivariate and therefore
suitable for simultaneous comparison of (relative) Ca, Mg and Fe
abundances.

2.6 Model verification

The parameter retrieval model was tested using a synthetic popula-
tion of 2000 H-dominated white dwarfs. The input values are listed
in Table 1. For testing purposes only, the f. distribution used was
uniform from O to 1. The model retrieves f; for each synthetic white
dwarf based on its (mock) detected metal abundances, assuming no
random noise or missing elements. It achieves a high degree of accu-
racy, as illustrated by Figure 3. The output values of f; are strongly
correlated with the input values, across the full range of possible
input values, with a Pearson correlation coefficient of 0.998.

The model failed to retrieve the core number fraction in 2/2000
systems with extremely low f;, and additionally that the model is not
always able to retrieve the initial nebular composition well. Neither
of these deficiencies has much effect on our results. The initial
nebular composition is only used as a stepping stone to estimate fc,
which is generally retrieved accurately.
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Figure 3. A test of how well parameter retrieval performs under control
conditions (i.e., no random noise, bias or missing elements). We set up a
control population of white dwarfs as described in Section 2.6. The white
dwarfs are polluted with material of varying fragment core fraction, fc,
shown on the x axis. The y axis shows the corresponding f; retrieved by our
algorithm. The strong correlation demonstrates that the parameter retrieval
component of the pipeline works well. Retrieval failed for 2 of the 2000
systems with an extremely low f;. The red dashed line illustrates a perfect
1:1 correlation.

3 RESULTS

This work presents forward models that predict the distribution
of compositions in a sample of polluted white dwarfs, depending
on three possible accretion scenarios (denoted Orbit-by-orbit, Col-
lisional and Delta, as explained in Section 2.2). Here we firstly
consider a representative example that illustrates the effects of de-
tection thresholds and random noise (Sections 3.1 and 3.2). We
then consider samples of white dwarfs generated according to the
three different accretion models, investigating the conditions under
which they may be distinguished (Section 3.3). Finally, we consider
whether any of these models is favoured by a sample of cool DZs
(Section 3.4). The setup of each section is summarised in Table 2.

3.1 The effect of non-detection of elements

It is almost always harder to detect Fe than Ca or Mg in the optical.
In this case, the detected sample is biased towards more (apparently)
core-rich pollutants. This is illustrated in Figure 4, which shows the
retrieved f; distribution for a population of 100,000 H-dominated
white dwarfs. This population was generated as in Section 2.6, with
auniform f; distribution (black line in Figure 4). The core-rich bias
is due to the preferential dropout of mantle-rich systems, illustrated
in Figure 5 (using Ca and Fe as proxies for mantle and core). The
red and blue crosses show systems where only one of Ca and Fe is
detected. For these systems, f. cannot be inferred and so they drop
out of the blue distribution in Figure 4 (unless backup elements
happen to be detected). Systems with Ca detected and Fe undetected
are more common than the inverse and have relatively high Ca/Fe
(i.e., are more mantle-rich). The 34,432 systems for which a f. can
be retrieved are modelled accurately (r = 0.995).
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Table 2. Summary of the pipeline set-up for the various results sections. b refers to the parameter in Equation 1.

Section f¢ Distribution(s) WD Parameters Detection Thresholds  Noise b
2.6,3.1 Uniform 40pc DAs v - -3
32 Uniform 40pc DAs v v -3
3.3 Orbit-by-orbit, Collisional, Delta 40pc DAs Vv v -3
3.4 Orbit-by-orbit, Collisional, Delta ~ Hollands et al. (2017) v v -5

—_
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0.25 Input
I Retrieved

Probability density

00 02 04 06 08 10
Fragment Core Number Fraction

Figure 4. An example of how the deduction of core content in planetesimals
accreted on to white dwarfs can be biased, based on mock detections of
elements in white dwarf photospheres. The blue bars show the retrieved dis-
tribution of fragment core fraction, f., for material accreted onto a synthetic
white dwarf population when using realistic detection thresholds, but no ran-
dom noise. Abundances of Ca, Fe (and other backup elements) below these
thresholds were considered to not be detectable (see Section 2.3.1). The
output population is skewed towards core-rich systems due to the resulting
preferential dropout of core-poor systems relative to the initial population
(black line). Extremely core-rich systems are also preferentially removed to
a lesser extent. The peak around 0.8 is a result of subsequent normalisation.
Retrieval was possible for 34,432/100,000 systems.

3.2 The effect of random noise

We now repeat the test in Section 3.1, adding random Gaussian
noise.

The effect of adding noise is, in general, to push the inferred
fragment core fraction towards extreme values. As an example, Fig-
ure 6 shows how an initially uniform f. distribution is distorted
towards extreme values when the Gaussian noise is 0.4 dex. This
occurs because f; is inferred from a ratio of two elemental abun-
dances (or rather, the difference, since the errors are applied in log
space). As the random error becomes very large, this difference is
dominated by the error, and will become either very positive or very
negative. When transformed back into linear space, the ratio tends
to become either very small or very large, resulting in a fragment
core number fraction close to either O or 1.

Figure 6 includes the effects of both detection thresholds
(which remove extreme values) and noise (which artificially re-
places them). The effects do not exactly cancel out at any point,
however. The detection thresholds are more effective at removing
low fragment core fractions than high ones, while random noise
artificially enhances both ends of the distribution.

74 1
_6 R
—
=
& 10
Ca and Fe Detected
—121. Neither Detected
Ca Detected
Fe Detected
—14+ . .
—16 -8 —6

Figure 5. Detected Ca and Fe abundances in the photospheres of 1000
synthetic white dwarfs selected randomly from the population described in
Section 3.1. To detect both of these elements, their abundances must exceed
a certain threshold determined by the individual white dwarf’s temperature
(see Section 2.3.1). In this case, a fragment core number fraction can be
estimated (black crosses), and the system contributes to the fragment core
fraction, f, distribution. Systems can drop out of the f: distribution if neither
Ca or Fe is detected (black circles), or if only one of Ca (blue crosses) and
Fe (red crosses) is detected (unless backup elements are detected). These
systems introduce bias because it is more likely that mantle-rich systems,
with high Ca/Fe, drop out of the f; distribution than the core-rich systems
(i.e., the blue crosses outnumber the red crosses).

3.3 Estimating the sample size needed to distinguish
accretion models

‘We now propagate three different populations of H-dominated white
dwarfs through the pipeline, corresponding to each of the three
accretion models (Orbit-by-orbit, Collisional, Delta). These models
are defined, for our purposes, by fragment core fraction distributions
(see Section 2.2). We include detection thresholds and vary the level
of noise.

We illustrate the retrieved distributions in Figure 7. The rows
correspond to the different accretion models, defined by the initial f;
distribution (black line). The blue bars illustrate the retrieved (final)
distribution. The columns correspond to different noise levels. The
left column shows the case of zero random noise, demonstrating
that the model recovers the initial distributions well in this case
(blue bars). The only notable discrepancy is a bias against retrieval
of very low f; (this is due to detection thresholds; see Section 3.1).

Adding noise (middle and right hand columns) causes the re-
trieved distributions to become smeared out. When the errors are
0.2 dex (middle column) the populations can still be visually dis-
tinguished by the number of peaks and presence or absence of an
extended core-rich tail. This is true despite the fact that no distri-
bution is retrieved to a high degree of accuracy. However, these
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Figure 6. Similar to Figure 4, but with the addition of 0.4 dex errors due to
random noise. The resulting detected f. distribution (blue bars) is pushed
towards extreme values (i.e., mantle-rich and core-rich objects) relative
to both the input distribution (black line) and the noise-free equivalent
(Figure 4). Retrieval was possible for 34,031/100,000 systems (primarily
limited by whether pollution levels are high enough to be detectable).

features are largely washed out once the noise is increased to 0.4
dex (right column).

The key question is: how noisy can the data be before these
distributions can no longer be distinguished, and what is the effect
of sample size? For a given noise level and sample size, we cal-
culate the probability that these distributions can be distinguished,
P(Distribution 1 # Distribution 2), via KS testing (see Section 2.5).
We illustrate the dependence of this probability on noise and sam-
ple size in Figure 8 for each combination of distributions. We draw
independent samples from a pool of 100,000 until we run out of
systems. Systems were ignored if f could not be inferred: these
sample sizes refer to a sample of white dwarfs each with individual
estimates of f., which requires detection of multiple elements.

When there is no noise, any two distributions can usually be
distinguished even for a small sample size of 20. As the noise level
increases while holding sample size fixed at 20, it generally becomes
harder to distinguish them. Given large enough observational error,
it is not possible to confidently distinguish any of the underlying
distributions from each other. This effect can be compensated for
by increasing sample size.

The top panel tracks P(Collisional # Orbit-by-orbit), which
drops below 50% for a sample size of 100 once the observational
error is increased to a realistic value of 0.2 dex. Given this noise
level, we find that a sample size of 500 is sufficient to ensure dis-
tinguishability (98%). To reach a 90% chance of distinguishability,
we estimate that a sample size of 275 is necessary.

The middle and bottom panels of Figure 8 track
P(Collisional # Delta) and P(Orbit-by-orbit # Delta). Both these
cases test whether differentiated material can be distinguished from
undifferentiated material. Given 0.2 dex errors, a sample size of
500 ensured that the Delta model could be distinguished from Colli-
sional in every test, while the equivalent figure for the Orbit-by-orbit
model is 200. We estimate that sample sizes of 275 (Collisional)
and 100 (Orbit-by-orbit) are sufficient for a 90% chance of distin-
guishability from the Delta model.

Figure 9 shows how P(Collisional # Delta) varies as a function
of both error and sample size. This is illustrative of the trade-off
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between error and sample size: for example, a sample of 60 white
dwarfs with a typical error of 0.1 dex has similar statistical power
to a sample of 200 white dwarfs with 0.3 dex errors.

These estimates do not explicitly consider instrument resolu-
tion because this is tied into the noise level (see Section 4.3).

3.4 Application to a sample of cool DZs

Figure 8 suggests that it is necessary to analyse populations of
2100 polluted white dwarfs (with detections of multiple relevant
elements) for evidence that one of the three accretion models con-
sidered here is favoured over the other two. We next turn our at-
tention to a sample of 202 cool white dwarfs with He-dominated
atmospheres. The sample is taken from Hollands et al. (2017), with
updated Mg abundances from Blouin (2020). The sample is not
necessarily selected in a manner that is unbiased in terms of com-
position, so caution should be taken in analysing the distribution of
compositions. Each white dwarf in this sample has detections of at
least Ca, Mg and Fe. Harrison et al. (2021a) found that 64 of these
systems show evidence of core-mantle differentiation, 7 of which
are to > 30-. However, these results could conceivably be attributed
to random noise (i.e., the Delta model in Section 2.2). We inves-
tigate whether this white dwarf sample is consistent with a Delta
distribution. We also test for consistency with the Orbit-by-orbit and
Collisional distributions described in Section 2.2.

This analysis differs from Section 3.3 in two key ways. Firstly,
we are testing synthetic samples for consistency with a real sam-
ple (of fixed sample size), rather than testing them against each
other. Secondly, this sample contains He-dominated (rather than
H-dominated) white dwarfs. This introduces additional uncertainty
from differential sinking, and parameter retrieval cannot be carried
out (see Section 2.4). We instead compare the relative abundances of
Ca, Fe and Mg between the synthetic and real samples. The different
evolutionary histories should manifest as different distributions of
the abundances of these elements. Population synthesis and mock
detection is also modified for He-dominated systems, as detailed in
Sections 2.1 and 2.3.

We create three synthetic populations of 50,000 cool He-
dominated white dwarfs, corresponding to each of the f. distri-
butions described in Section 2.2. Figure 10 compares the real Ca,
Fe and Mg abundances against the synthetic abundances for each
of these populations, and for each of three different noise levels (0,
0.2 and 0.4 dex). Each sample (real or synthetic) contains 202 data
points, although some real data points occupy the same location due
to rounding. The 202 synthetic data points are randomly drawn from
the subset of all systems with detectable abundances of Ca, Mg and
Fe. Visual inspection suggests that, of the noise levels shown, 0.2
dex errors permit the best match between synthetic and real data.
For this noise level, the Delta distribution appears to offer a better
match to the data than either of the Collisional or Orbit-by-orbit
distributions.

We quantify this result by performing a Cramér test (see Sec-
tion 2.5). This test is competitive with other multivariate tests in
terms of sensitivity to the dispersion and location of test distribu-
tions (Puritz et al. 2022). Importantly, it also proved sensitive to
changes in our synthetic compositional distributions in practice.
Figure 11 illustrates the p-values obtained, including 1 sigma error
bar estimates based on generating as many independent synthetic
samples as possible, given the total number of synthetic systems.

On average, the best match to real data is obtained for synthetic
populations generated from a Delta distribution, assuming 0.175
dex errors (although reasonable matches can be obtained for noise
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Figure 7. The effect of adding random noise is to broaden, and eventually wash out, the true distribution of the composition of accreted material. Here,
composition is defined by the fragment core number fraction: the fraction of accreted material which is core-like. From left to right, each panel in a row
corresponds to increasing the random noise injected into a synthetic population of white dwarfs. The true fragment core fraction, ft, distribution is indicated
with a black line, and the retrieved distribution with blue bars. The three rows correspond to the Orbit-by-orbit, Collisional and Delta f, distributions described
in Section 2.2. When no random noise is added (left column), these distributions are retrieved accurately. When 0.2 dex errors are added (middle column), none
of the retrieved distributions closely resemble the corresponding input, but can still be distinguished by the number of peaks and the range of values covered.
When the errors are increased to 0.4 dex, these distinguishing features are largely washed out. The input distributions show all 100,000 generated systems in
the relevant population, with the exception of the ‘Delta’ case for which the single input value is indicated with a vertical line. The retrieved values are only
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shown for the systems for which parameter retrieval was possible (just under 30,000 systems in each case).

levels between about 0.1 and 0.25 dex). The Collisional distribution
can also yield acceptable matches to the data, although it requires
lower noise levels (below ~ 0.15 dex) as it is an inherently broader
distribution.

While the Cramér test generally appears to capture the degree
of visual compatibility between real and synthetic data well, we note
that for very low noise levels (< 0.1 dex), the Collisional samples
do not appear to match very well visually despite being statistically
consistent. However, such noise levels are likely unrealistic in any
case.

4 DISCUSSION

We find three key results. First, any realistic sample of polluted white
dwarfs is likely biased towards core-rich material (with low Ca/Fe).
Secondly, a sample of 500 polluted H-rich white dwarfs (each with
multiple elements, such that core and mantle content can be inferred)
is large enough to reliably distinguish between Collisional, Orbit-
by-orbit and Delta accretion scenarios. Finally, the sample of 202

cool DZs from Hollands et al. (2017) is sufficiently noisy that there is
no evidence for a an additional spread in Ca, Fe and Mg abundances
beyond the presence of Gaussian noise. Consequently, the data are
best explained by our Delta model, in which the accreted material
is undifferentiated (or unfragmented). We begin by discussing the
implications of this result.

4.1 The cool DZ sample

Our results demonstrate that the relative Ca, Mg and Fe abundances
of areal sample of 202 cool DZs, identified from SDSS data by Hol-
lands et al. (2017), can be reproduced reasonably well by an under-
lying fragment core fraction distribution which is a Delta function,
combined with random Gaussian noise of roughly 0.1 to 0.25 dex.
Physically, this corresponds to a model in which accreted material is
either undifferentiated, or has experienced minimal fragmentation
following differentiation. Apparent enhancements (or depletions) of
Fe in individual systems are therefore due to random noise, rather
than being indicative of geological processes.
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Figure 8. Top: Probability that two samples of accreted pollutants, follow-
ing Collisional and Orbit-by-orbit accretion models, can be distinguished
statistically as a function of sample size and error due to random noise.
Middle and Bottom: Similar to top panel, but comparing the Delta model to
Collisional (middle) or Orbit-by-orbit (bottom). Given realistic errors of 0.2
dex, a sample size on the order of 500 allows all three models to be reliably
distinguished from each other. The green shaded region shows the typical
1 sigma error range based on Ca detections for all systems for which we
have data. Note that these sample sizes assume that each white dwarf in the
sample has a f. estimate (which requires detection of multiple elements).
In our synthetic populations, this was possible for roughly half of the white
dwarfs with detectable pollution, or about 30% of the whole population.

While the best model (Delta) invokes accretion of undifferenti-
ated material, the data can also be matched by the Collisional model,
in which white dwarf pollutants are fragments from collisions. This
requires the random noise to be below 0.15 dex. In this model, the
spread in pollutant compositions is partially due to random noise,
but is also partially due to genuine variation in the core fractions
of accreted pollutants across the sample. However, Figure 11 indi-
cates that this model is only borderline acceptable, and should be
disfavoured compared to the Delta model.
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Figure 9. The probability that two samples of polluted white dwarfs can
be distinguished as a function of error (i.e., random noise) and sample size.
One sample corresponds to collisionally evolved pollutants, the other to
pollutants which follow a Delta f. distribution. This plot is essentially a
different representation of the middle panel of Figure 8. As in Figure 8, the
sample size includes only systems for which f. can be estimated, which
requires detection of multiple elements.

The higher noise level implied by the Delta model, compared
to the Collisional model, better matches the typical errors on the real
data (which are roughly 0.1 to 0.2 dex). Indeed, on the assumption
that the Delta model is accurate, the implied noise range of 0.1 to
0.25 dex acts as an independent test of the accuracy of the real error
estimates. In this case, our results broadly agree with these estimates.
The allowed error range in the Collisional scenario (< 0.15 dex)
aligns less neatly with the data. However, it is plausible that the
errors on the real data are overestimated due to correlations between
abundances, which we do not take into account (see Section 4.5.7).

Overall, we consider the Delta f; distribution to be the best
supported by the modelling considered here. This model implies
that accreted material is primitive, and any apparent evidence of
differentiation is due to random noise. However, an analysis of the
same sample of 202 cool DZs at the individual system level finds
7 systems?> with strong (> 307) evidence of core-mantle differentia-
tion (Harrison et al. 2021a; Buchan 2023). This is highly unlikely
to occur by chance (0.016%). All 7 systems feature additional cor-
roborative elements not considered here (Ni or Cr)> and/or atyp-
ically small abundance uncertainties, such that it is more difficult
to explain these systems by random noise. When the corroborative
elements are removed, and errors are increased to 0.2 dex where
appropriate, only SDSS J0823+0546 is still significant at the 30
level. The probability of randomly finding at least one 30 detection
from a sample of 202 is 42%. In other words, if these systems are
treated in a way which is more compatible with our three-element,
single-valued random noise model, they would not appear to be so
anomalous.

2 These systems are SDSS J0010-0430, SDSS J0744+4649, SDSS
J0823+0546, SDSS J0939+4136, SDSS J1043+3516, SDSS J1234+5208
and SDSS J1340+2702.

3 For SDSS J0744+4649 only, Na is also a corroborative element because
this system was inferred to be accreting crustal material, of which Na is
diagnostic.
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Figure 10. Ternary plots comparing the relative Ca, Mg and Fe abundances of real (blue) and synthetic (orange) white dwarfs. The real abundances are taken
from a sample of 202 cool DZs (Hollands et al. 2017; Blouin 2020). Some of these systems have the same relative Ca, Mg and Fe abundances. Each of the
nine panels shows a different set of synthetic abundances, each with 202 data points. The nine synthetic sets are generated using different combinations of
underlying f: distribution (rows) and level of random noise (columns). The synthetic samples are randomly selected from those systems which have detectable
levels of Ca, Mg and Fe. The abundance of Ca is multiplied by 10 for visual clarity (for purposes of this figure only). The relative Mg and Fe abundances are
therefore higher than shown. By eye, the synthetic data best matches the real data at a noise level of 0.2 dex. For this noise level, the Delta model appears to
offer a better match to the data than either of the Collisional or Orbit-by-orbit models. Stellar composition is shown for reference, which is a good proxy for
chondritic composition. The bulk and mantle compositions of Earth and Mars are also shown (McDonough 2003; Yoshizaki & McDonough 2020). The core

content of Ca and Mg is assumed to be zero.

Nevertheless, these systems do demonstrate that the undiffer-
entiated (Delta) model cannot be the full story. However, we are
unable to place constraints on any differentiated component of the
pollutant population given the available sample size and the errors
on the abundances.

A better model may invoke a mixture of the three evolutionary
scenarios considered here, and possibly others. However, such a
mixture model introduces additional complexity. A larger sample,
smaller abundance uncertainties and/or more elements would be
needed to tease out these additional refinements. 22 of the cool
DZs feature detections of the siderophile element Cr, which can
be used as a diagnostic for f.. However, we find that this subset
is not large enough to be statistically inconsistent with any of the
three accretion models (at any noise level), despite the additional
sensitivity provided by the inclusion of this extra element in the
analysis.

Some members of the cool DZ sample with clear Fe lines re-
ceived follow-up observations, leading to higher signal-to-noise ra-
tios. Therefore, such a mixture model should consider the possibility
of systematically lower noise on systems with high Fe abundance.

4.2 Sources of core-rich bias

The bias towards preferential detection of core-rich material is a
direct result of the relative ease of detecting Ca relative to Fe,
as noted by Bonsor et al. (2020). This compounds an additional
core-rich bias which can be introduced during modelling of relative
metal abundances. Mantle-rich material and differential sinking are
typically degenerate, as both processes deplete Fe relative to Ca and
Mg. Within the Bayesian frameworks of Harrison et al. (2021a),
Buchan et al. (2022) and Bonsor et al. (2023), this causes a bias
against inference of mantle-rich material as this requires an extra
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Figure 11. A measurement of how well the synthetic populations of white dwarfs match the sample of cool DZs in Hollands et al. (2017) as a function of
random noise. The vertical axis indicates the p-value calculated from a Cramér test as applied to the relative abundances of Ca, Mg and Fe. Higher values
indicate greater consistency with the real data. The horizontal dashed line indicates the 0.05 significance threshold, below which the real and synthetic samples
are inconsistent. This threshold is arbitrary and should not be treated as a hard boundary. Results for three f; distributions are shown: Orbit-by-orbit (blue
squares), Collisional (red circles) and Delta (black crosses). The orbit-by-orbit p-values are extremely low, so are cropped out for visual clarity. Reasonable
matches to the data are found for the Delta distribution (with random noise between about 0.1 and 0.25 dex) and for the Collisional distribution with noise

levels below about 0.15 dex.

free parameter, which is strongly penalised. Indeed, these papers
find that core-rich systems heavily outnumber mantle-rich systems.
A similar degeneracy is present in the Bayesian analysis of Swan
et al. (2023), although the presence of (at least) 5 elements in their
data, along with several upper bounds, reduced any resulting bias.
Future work aiming to calculate the relative frequency of core- and
mantle-rich pollutants should take these biases into account. The
detection of multiple elements (or estimation of upper bounds) can
mitigate against degeneracy.

4.3 Implications for future surveys

This work highlights the need for unbiased surveys in the future,
or at least surveys with well-understood biases. If we are to use
an observed sample of polluted white dwarfs to interpret the true
distribution of composition in the accreted bodies, it is key to know
how the sample was selected and the sensitivity to detection of
different elements in each white dwarf. This work finds that in
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order to have a good (> 80%) chance at drawing conclusions on
whether a given f; distribution can explain compositional trends,
we require a sample size on the order of hundreds, with 500 white
dwarfs almost guaranteeing statistical discrimination in our three
cases. This assumes that all white dwarfs have detections of multiple
elements, whose abundances have typical errors of 0.2 dex.

Figure 9 may be a useful guide for how these effects should
be weighed against each other, if the expected error on abundances
can be estimated. Note that the sample size on the horizontal axis
includes only those systems for which f; can be estimated, which
requires detection of multiple elements. For H-dominated systems,
estimating f. requires at least one siderophile and one lithophile,
plus another element to break the degeneracy on nebular composi-
tion. For He-dominated systems, the number of elements required
is more difficult to determine because retrieval of f. was not pos-
sible with our simple model. However, Section 3.4 demonstrated
that direct comparison of three elements (Ca, Mg and Fe) may be
sufficient.
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The additional complexity of modelling the pollutants accreted
by He-dominated systems is ultimately due to their comparatively
long sinking timescales: from a modelling perspective, shorter is
better. Higher values of Teg and log(g) are therefore also favourable
in general. However, there is no reason why different types of white
dwarf (i.e., H- and He-dominated) cannot be combined into a larger
sample and modelled together as in Section 3.4.

We do not consider the effect of resolution on our detection
thresholds explicitly. This is because the resolution should also
affect the typical observational error, and initial testing showed that
the error effect was dominant. In Figure 9, the effect of resolution
is therefore indirectly tied to the error shown on the vertical axis.

4.4 The importance of collisions in exoplanetary systems

White dwarfs accrete planetary bodies of at least tens of kms (Jura
2003). The study of main sequence debris discs leaves an open
question regarding whether such large planetesimals are collision-
ally evolved. These debris discs are detected via infrared emission,
which arises from small dust grains that are continually replenished
via a collisional cascade. The size of the largest bodies which feed
the cascade is unclear. Until recently, the largest debris was often
assumed to be dwarf-planet sized, like in our Solar System, but this
cannot be true for the largest, brightest debris discs, otherwise their
mass would exceed that available in protoplanetary discs. This prob-
lem is resolved if the maximum size of bodies which participate in
the collisional cascade is on the order of a few km (Krivov & Wyatt
2021). White dwarf observations could act as a test of this theory,
if they were to provide evidence as to whether larger planetesimals
are collisionally evolved and therefore part of a collisional cascade.

4.5 Limitations and caveats of our analysis

The most important limitations of the cool DZ analysis are the un-
certainties on our relative sinking timescales for the He-dominated
systems, and the possibility that the initial nebular composition
could differ from our assumed values. For the analysis of the H-
dominated systems, the biggest caveat is that our choice of signif-
icance threshold (used to determine whether two distributions are
distinct) is arbitrary. We focus on these issues first, before discussing
other caveats which have less impact on our results.

4.5.1 Relative Sinking Timescales

Throughout this work, we must consider the effects of differential
sinking, which requires knowledge of the relative sinking timescales
for key metals. Inaccuracies in these timescales could significantly
affect our predicted synthetic abundances for the cool DZ sample.
We use sinking timescales from Koester et al. (2020), with con-
vective overshoot included and log(Ca/He) fixed to —9.5 where
relevant. The uncertainty in these timescales can be estimated
by comparison against timescales taken from the Montreal White
Dwarf Database, following Fontaine et al. (2015a,b). These sources
use independent prescriptions for the primary model components:
collision integrals, average ionic charges, and atmosphere mod-
els/envelope integration. For He-dominated systems, the MWDD
timescales neglect the effect of metals, so for the sake of making
a fair comparison we reduce our assumed value of log(Ca/He) to
the minimum value of -15; we find this makes little difference to
relative sinking timescales, however. We use this approach to es-
timate the uncertainty in 7c,/7ge, 7ca/TMg and Tge/Tvg. We did

Table 3. Approximate sample size required to distinguish between two pop-
ulations of H-dominated systems with 90% probability, as a function of the
chosen significance threshold. We use 0.05 throughout this work. The two
populations are assumed to have 0.2 dex errors on all abundances, and are
generated according to the specified f; distributions. Collisional is abbre-
viated to ‘Col’. Orbit-by-orbit is abbreviated to ‘Obo’. The populations are
distinguished (or not) by comparing the retrieved f. distributions. Sample
sizes include only systems for which f; can be estimated, which requires
detection of multiple elements.

Threshold  Delta/Col  Delta/Obo  Obo/Col
0.1 200 75 225
0.05 275 100 275
0.01 300 125 350
0.005 400 150 450

not explore the full temperature range of the cool DZ sample (the
MWDD does not make predictions for He-dominated white dwarfs
below 7000 K).

For H-dominated white dwarfs, we find that 7c,/7mg and
TFe/TMg can be significantly discrepant (by up to about 30% for
the most relevant region of parameter space). We anticipate that this
discrepancy should not have a major impact on our results for the H-
dominated systems because it affects all our synthetic populations
in a uniform manner.

The effect on He-dominated systems is more important, with
the impact on 7¢,/7pe being especially strong. Our timescales pre-
dict that 7c,/Tre ~ 1.4 to within a few percent (with or without
convective overshoot), while MWDD predicts 7c,/mre ~ 1, with
Tpe sometimes being greater than 7c,. This would imply that dif-
ferential sinking does not strongly affect the observed Ca/Fe ratio,
while our adopted timescales predict that Ca/Fe could increase by
a factor of up to 4 for the extreme case of observation 5 sinking
timescales after the end of accretion. Comparison to Figure 10 sug-
gests that this uncertainty is therefore large enough to potentially
change which of our models best matches the cool DZ sample.

These discrepancies strongly motivate future work to explore
the impact of different treatments of differential sinking more fully.

4.5.2  Stellar composition

The progenitors of the cool DZ stars may have systematically dif-
ferent compositions from the FGK stars assumed in Section 2.1.2
because stellar composition evolves over galactic time (e.g., Ness
et al. 2019), and cool white dwarfs must have formed at early times
(if not, they would still be warm). Data extracted from the Hypatia
catalog (Hinkel et al. 2014) implies that Ca/Fe or Mg/Fe could be
higher by roughly 0.1 or 0.2 dex (a factor of 1.5) for such stars.
Figure 10 implies that a shift of this magnitude could significantly
change our predicted synthetic compositions.

4.5.3  Significance thresholds

Our estimates of the probability of distinguishing two distributions
(Figures 8 and 9) depend on the choice of significance threshold. We
deem two distributions to be different if the p-value of a KS test is
less than 0.05, but this number is arbitrary. Table 3 exemplifies how
different choices propagate into our sample size estimates, showing
that different typical choices can change our estimates by a factor
of roughly 2.

MNRAS 000, 1-18 (2023)



4.5.4 Robustness of detection thresholds

Our results from the synthetic H-dominated systems are sensi-
tive to our calculation of detection thresholds (see Section 2.3.1),
which result in a higher detection rate of lithophiles (Ca, Mg) than
siderophiles (Fe). This leads to the inference of core-rich bias and
affects the proportion of a given polluted white dwarf sample for
which f; can be estimated. Qualitatively, we expect this result to be
robust in general because the strength of Ca (and even Mg) lines is
typically high compared to Fe lines (e.g., Klein et al. 2010; Xu et al.
2014). However, if one were to observe in a wavelength range in
which the strongest lines are associated with siderophile elements
such as Fe, this bias would be completely reversed.

In the synthetic populations, we generally find that Mg is the
most commonly detected element, followed by Ca, which is un-
expected (in reality, Ca is the most frequently detected element)
but doesn’t affect this conclusion because both Mg and Ca are
lithophiles. This may well be attributable to the detection thresh-
olds. Figure A1l shows that the detection thresholds for Mg are
generally lower than real detected values. This suggests that the
detection thresholds are overly lenient on Mg, and mock detections
are sometimes made which would not realistically be possible.

Throughout this work, we vary noise level freely while using
one set of detection thresholds, while in reality they should be
linked. Higher resolution leads to less restrictive thresholds and
also to smaller abundance errors. Modelling this effect is beyond
the scope of this work.

4.5.5 Time-averaging and accretion of multiple bodies

The sinking timescales for He-dominated white dwarfs can be com-
parable to the timescale of accretion. This means that the pollution
present in the atmosphere is an average over some extended period
of time, during which the accreted composition may have changed
non-negligibly. We ignore this effect, calculating instantaneous pol-
lution compositions (as modified by differential sinking) instead.
Time averaging would inevitably lead to a narrower spread of pre-
dicted compositions.

It is also possible that white dwarfs accrete material from mul-
tiple bodies (with different f.) simultaneously (Jura 2008; Turner
& Wyatt 2020; Johnson et al. 2022). In practise, this would have
very similar effects to time-averaged accretion, leading to a nar-
rower spread in detected compositions. However, it could affect
H-dominated systems as well as He-dominated systems.

Both time-averaging and accretion of multiple bodies could
significantly increase the sample sizes needed to distinguish be-
tween accretion models, as the extreme f. values which act as
diagnostics may get washed out.

However, our result that the Delta model best explains the
cool DZ sample would be unchanged, because even in the extreme
case that the spread of the Collisional and Orbit-by-orbit distribu-
tions is completely averaged away, they reduce to a Delta function.
The Orbit-by-orbit distribution in particular ought to be averaged
over multiple orbits, as the timescale for compositional variation
is ~0.1 Myr (Brouwers et al. 2023) which is less than typical sink-
ing timescales. Additionally, differently sized fragments accrete at
different rates so if multiple bodies are accreted during the same
accretion event, their compositions will average out to some extent.
Broadly speaking, the more one models these effects, the more the
Orbit-by-orbit distribution would resemble the Delta distribution.
Figures 10 and 11 suggest that this would better match the data, but
it would also make the Orbit-by-orbit scenario somewhat redundant.
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4.5.6  The most likely accretion phase

For He-dominated white dwarfs, the distributions of 7 and feyent
assumed in Section 2.4.1 imply that the majority of systems are
in declining phase, with a smaller proportion in build-up/steady
state. This qualitatively agrees with the analysis of Buchan (2023),
but that analysis is ultimately dependent on estimates of how long
accretion events typically last.

For simplicity, we assume the choice of f. distribution does not
affect the distribution of #eyen: and A (and that they are not correlated
with the sampled value of f..). These variables could be linked via
a more thorough model.

The sample size requirements for H-dominated white dwarfs
may be underestimated by up to = 20%. This is because we have
assumed that all such systems are in a steady state of accretion, both
during synthesis and parameter retrieval. This is a safe assumption
unless the white dwarf is particularly cool and does not have high
log(g). In this case, typical sinking timescales can be comparable to
the accretion event timescale, which we assume, for the purpose of
this calculation, is typically on the order of 1 Myr (as in Cunningham
et al. 2021). The probability of a H-dominated system not being in
steady state is then significant if the Mg sinking timescale for that
system is greater than roughly 10° yr. We find that 190 of a random
sample of 1000 synthetic H-dominated systems meet this criterion.
In a worst case scenario the offending systems could be removed
from the sample, although a more sophisticated model would be
able to factor in the longer sinking timescales anyway.

4.5.7 Errors

We assume that all abundance errors are Gaussian and symmetric (in
log space). This replicates how abundances are typically reported,
but it is worth noting that asymmetric errors could potentially mimic
fc distributions which skew in a particular direction. We assume
that errors are equal for each element within a system, and equal
for every system within a sample. The former assumption seems
justifiable based on the cool DZ sample, but the latter assumption
is more questionable: a system with low signal-to-noise ratio is
likely to have large errors on all elements. This could potentially be
modelled by varying the noise level within a sample according to a
Gaussian distribution, then sampling from that noise level according
to a Gaussian distribution. However, since the convolution of two
Gaussians is another Gaussian, this should be equivalent to our
current treatment.

We also assume errors associated with different elements in
the same system are uncorrelated. This is unlikely to be true, since
abundance uncertainties are partially dependent on the uncertain-
ties on stellar parameters introduced during atmospheric modelling,
which are common to all elements (see the Appendix of Klein et al.
2021 for further discussion). However, in the absence of covariance
matrices describing this effect, it is difficult to assess its impact.
Our estimate of the noise level for the DZ sample (roughly 0.2 dex)
may be an underestimate, since we effectively ignore any correlated
component. The errors found by Hollands et al. (2017) include any
correlated component which may be present. We also neglect sys-
tematic sources of error such as the optical-UV discrepancy (Xu
et al. 2019), but since all element abundances for the cool DZ sam-
ple are estimated from optical data this discrepancy is not an issue
here.
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4.5.8 Core and mantle composition

We assume that the composition of the core and mantle components
of any pollutant body is similar to that of Earth, but scaled according
to its initial nebular composition. However, white dwarf pollutants
may instead derive from reservoirs more analogous to meteorites or
Mars. The primary compositional trend within the Solar System is
depletion of volatile elements. Since Ca, Mg and Fe are not volatile,
we expect that scaling to the bulk composition of other Solar System
reservoirs should not affect our results much. In this sense, our Delta
model could be interpreted as the accretion of chondritic material.
Adjusting the core and mantle composition to match those of
Mars would likely affect our results more. Figure 10 illustrates how
Mars’ mantle compositions compares to Earth’s (the cores are both
100% Fe for the purposes of this plot). This figure suggests that
adopting a Mars-like composition might have a noticeable effect on
the predicted composition of mantle-rich fragments, making them
less Fe-poor. This could make the Orbit-by-orbit model more viable,
but otherwise appears unlikely to have a strong effect on our results.

4.5.9 Fragment core number fraction distributions

The Orbit-by-orbit distribution used in Section 3.3 is a simplification
calculated assuming an isolated tidal disruption event, followed by
asynchronous accretion. Realistically, there may also be collisions
between the resulting fragments. The Collisional and Orbit-by-orbit
distributions we present should be viewed as extreme cases. The true
fc distribution for a real sample may lie somewhere in between the
extremes, in which the sample size estimates in Section 3.3 should
be viewed as lower bounds. We also note that even if collisions
and orbit-by-orbit accretion are actually taking place, but the bodies
being accreted are undifferentiated, this is observationally indistin-
guishable from the Delta model.

In the Orbit-by-orbit case, we neglect the temporal evolution
of the f; distribution. In the model of Brouwers et al. (2023), there
is a short burst of core-rich accretion (with very high accretion
rate), followed by a very long period in which mantle-rich material
accretes at a very slow rate. In our model, a lower accretion rate cor-
responds to a lower pollution level (all else being equal), indicating a
lower chance of detecting mantle-rich material. However, the longer
timescale of mantle-rich accretion increases the number of white
dwarfs which would be in this state. It is unclear how these effects
would trade off, but it is possible that much of the mantle-rich peak
(see Figure 2) would be undetectable. This might make it harder to
distinguish it from the Collisional and Delta cases, increasing the
necessary sample sizes. It might, however, allow for a better match
to the cool DZ sample.

4.5.10 Upper bounds

We have ignored the possibility of upper bounds on elemental abun-
dances, partially due to their significant additional complexity. How-
ever, upper bounds on key elements are potentially a valuable source
of information. For example, if Ca was detected and Fe was not,
but there was a (low) upper limit on Fe, one could still infer that
this material is mantle-rich. The calculation of such upper bounds
would help combat the bias towards core-rich systems described in
Section 3.1.

5 CONCLUSIONS

Observations of polluted white dwarfs have the potential to reveal
the geological history of exoplanetary systems. A key diagnostic
is the abundance of Fe relative to lithophiles such as Ca and Mg,
which can be used to infer accretion of core- or mantle-like mate-
rial. However, measured abundances can be altered by random noise
plus systematic errors and skewed by observational bias, motivating
a population level analysis in which large sample sizes overcome
these obstacles. We focus on the potential for populations of polluted
white dwarfs to discriminate between three models describing the
evolution of rocky bodies. The first model is the accretion of highly
processed collision fragments of larger planetary bodies with iron
cores. The second model is that the separation of core and man-
tle material is a natural consequence of orbit-by-orbit accretion.
The third model assumes minimal differentiation or, equivalently
from an observational perspective, minimal fragmentation. We use
synthetic populations of white dwarfs to investigate the conditions
under which these models can be disentangled, and the effects of
observational bias and random noise.

We find that samples of white dwarfs are likely biased by
selection effects towards core-rich material. An additional bias
is introduced by random noise, which leads to the preferential
(mis)identification of extremely core-rich or mantle-rich material.
Taking these biases into account, we calculate the probability that
the three accretion models can be distinguished, finding that it in-
creases as sample size increases and as the random noise associated
with metal abundances decreases. Assuming 0.2 dex errors, this
probability approaches 100% once the sample size is above 500.
This sample size counts only systems with enough detected ele-
ments to estimate the fraction of core material in the pollutant.

We apply our techniques to the sample of 202 cool DZs pre-
sented by Hollands et al. (2017), testing whether their relative Ca,
Mg and Fe abundances are consistent with those predicted by our
accretion models. We find that these abundances are best repro-
duced, and are reproduced well, by a model in which differentiation
and/or fragmentation has not occurred and the apparent spread of
compositions is due to random noise. We estimate that the typical
error due to noise is roughly 0.2 dex, consistent with the actual
reported errors.

However, some individual systems do show convincing evi-
dence for differentiation due to additional corroborative elements
and/or particularly small errors on their abundance estimates. Our
simple model cannot explain these systems and is therefore in-
complete. In order to explain them, a more complete model which
additionally invokes a contribution from differentiated material is
necessary, but additional data are required to constrain such a model.
We also note that our interpretation is sensitive to assumptions about
the provenance of pollutants and time elapsed since their accretion
onto a white dwarf. Nevertheless, our results illustrate the potential
for random noise to mimic geological processes.

Our models make a number of assumptions. Our conclusions
for the cool DZ sample are particularly sensitive to the relative
timescales on which different metals diffuse through the white dwarf
atmosphere. Our conclusions could also be modified if a different
initial stellar composition, compared to the progenitors of other
white dwarfs, were to be assumed. The prediction for the number
of H-dominated white dwarfs needed to distinguish between evo-
lutionary models is sensitive to our arbitrary choice of significance
threshold.

Alongside the DESI survey, which has so far discovered 121
white dwarfs with metal lines (Manser et al. 2024), the 4MOST,
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SDSS-V and WEAVE-WD surveys will dramatically expand the
population of known polluted white dwarfs (the WEAVE-WD sur-
vey aims to provide spectroscopy from 100,000 systems). The Gaia
data release DR3 (Gaia Collaboration et al. 2023) includes a sample
of 100,000 white dwarfs, which may contain systems with as-yet
undiscovered metal pollution. Vincent et al. (2023) identified 896
high-confidence DZs within this sample, and Kao et al. (2024) used
machine learning to find 375 white dwarfs with at least 3 metals.
Overall, the prospects for obtaining a sample of a few hundred suit-
able DZs within a few years appears promising. At the same time,
modelling techniques for estimating metal abundances are contin-
ually improving. The combination of these effects should dramati-
cally improve the potential for populations of white dwarfs to reveal
the key processes which govern the evolution of planetary systems.
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Figure Al. Illustration of the detection thresholds for H-dominated white dwarfs for each element considered in this work. Abundances above the relevant
solid line for the specified element at a certain temperature are deemed detectable. The temperature range shown here spans the full range we consider. The
calculation of these thresholds is described in Section 2.3.1. As a sanity check, we also illustrate detected metal abundances (red dots) and upper bounds
(red crosses) for real DAs. These data were obtained by exporting all white dwarfs from the Montreal White Dwarf Database (Dufour et al. 2017, accessed
01/08/2022), and compiling all valid abundances from the output. These values provide a relevant comparison, although alternative values may be available.
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Figure A2. Illustration of the detection thresholds for He-dominated white dwarfs for Ca, Mg and Fe. Abundances above the relevant line for the specified
element at a certain temperature are deemed detectable. The temperature range shown here spans the range of the cool DZ sample from Hollands et al. (2017).
The abundances of elements in this sample are also illustrated. The detection thresholds were obtained by manual calibration to these abundances.
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