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ABSTRACT
This paper considers whether the population of known transiting exoplanets provides
evidence for additional outer planets on inclined orbits, due to the perturbing effect
of such planets on the orbits of inner planets. As such, we develop a semi-analytical
method for calculating the probability that two mutually inclined planets are observed
to transit. We subsequently derive a simplified analytical form to describe how the
mutual inclination between two planets evolves due to secular interactions with a
wide orbit inclined planet and use this to determine the mean probability that the two
inner planets are observed to transit. From application to Kepler-48 and HD-106315
we constrain the inclinations of the outer planets in these systems (known from RV).
We also apply this work to the so called Kepler Dichotomy, which describes the excess
of single transiting systems observed by Kepler. We find 3 different ways of explaining
this dichotomy: some systems could be inherently single, some multi-planet systems
could have inherently large mutual inclinations, while some multi-planet systems could
cyclically attain large mutual inclinations through interaction with an inclined outer
planet. We show how the different mechanisms can be combined to fit the observed
populations of Kepler systems with one and two transiting planets. We also show how
the distribution of mutual inclinations of transiting two planet systems constrains the
fraction of two planet systems that have perturbing outer planets, since such systems
should be preferentially discovered by Kepler when the inner planets are coplanar due
to an increased transit probability.

Key words: planets and satellites: dynamical evolution and stability

1 INTRODUCTION

Over the past 20 years the number of exoplanet detec-
tions has soared most notably due to contributions from
the Kepler space telescope (Kepler herein). As of Novem-
ber 2016 Kepler has detected 3414 confirmed planets, with
575 existing in multi-planet systems (exoplanet.eu; Schnei-
der et al. (2011)). Planet multiplicity provides information
on the underlying architecture of planetary systems, such as
expected orbital spacing, mutual inclinations and size distri-
butions. For the multi-planet systems observed by Kepler,
super Earth/mini Neptune type objects on tightly packed or-
bits inside of ∼200 days are common (Lissauer et al. (2011);
Lissauer et al. (2014); Morton et al. (2016)). Moreover such
systems are observed to have small inclination dispersions of
.5◦ (Lissauer et al. (2011); Fang & Margot (2012); Figueira
et al. (2012); Tremaine & Dong (2012); Marmier et al.
(2013); Fabrycky et al. (2014)).

? E-mail: mjr201@ast.cam.ac.uk

How representative Kepler multi-planet systems are of
a common underlying planetary architecture however is im-
peded by Kepler preferentially detecting objects which orbit
closest to the host star. To generalise Kepler systems to an
underlying population, it is therefore necessary to account
for the inherent probability that transiting systems are ob-
served. Taking into account such probabilities, there appears
to be an over-abundance of planetary systems with a single
transiting planet (Lissauer et al. (2011); Youdin (2011); Jo-
hansen et al. (2012); Ballard & Johnson (2016)). This is
commonly referred to as the ’Kepler Dichotomy’.

It is currently not known what causes this excess. Sta-
tistical and Spitzer confirmation studies all suggest that the
false positive rate for single transiting objects with Rp <4R⊕
is low at .15% (Morton & Johnson (2011); Fressin et al.
(2013); Coughlin et al. (2014); Désert et al. (2015)). Perhaps
then, there are populations of inherently single planet sys-
tems in addition to multi-planet systems which are closely
packed and have small inclination dispersions. However there
may also be a population of multi-planet systems where the
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2 M. J. Read et al.

mutual inclination dispersion is large, such that only a single
planet is observed to transit.

The presence of an outer planetary companion may
drive this potential large spread in mutual inclinations. Re-
cent N-body simulations show that the presence of a wide or-
bit planet in multi-planet systems can decrease the number
of inner planets that are observed to transit, either through
dynamical instability or inclination excitation (Mustill et al.
(2016); Hansen (2017)). Beyond a few au, planetary transit
probabilities drop to negligible values. It is possible there-
fore that additional wide orbit planets could indeed exist
in multi-planet systems observed by Kepler. Giant planets
at a few au have been detected around stars in the gen-
eral stellar population by a number of radial velocity (RV)
surveys (Marmier et al. (2013); Rowan et al. (2016); Wit-
tenmyer et al. (2016); Bryan et al. (2016)), with suggested
occurrence rates ranging from ∼ 10 − 50% (Cumming et al.
(2008); Mayor et al. (2011); Bryan et al. (2016)). More-
over, indirect evidence of undetected giant planets has also
been suggested through apsidal alignment of inner RV de-
tected planets (Dawson & Chiang (2014)). As RV studies
are largely insensitive to planetary inclinations, it is possible
that such wide orbit planets could be on mutually inclined
orbits, which may arise from a warp in the disc (Fragner
& Nelson (2010)) or due to an excitation by a stellar flyby
(Zakamska & Tremaine (2004); Malmberg et al. (2011)).

Calculating transit probabilities of multi-planet systems
is complex, often requiring computationally exhaustive nu-
merical methods such as Monte Carlo techniques (e.g. Lis-
sauer et al. (2011); Johansen et al. (2012); Becker & Adams
(2016); Mustill et al. (2016); Hansen (2017)). However ana-
lytical methods can offer a significantly more efficient route
for this calculation and allows for coupling with other funda-
mental analytical theory, such as for the expected dynamical
evolution of the system from inter-planet interactions. De-
spite this however, analytical investigations into the transit
probabilities of multi-planet systems for this purpose are
relatively sparse (e.g. Ragozzine & Holman (2010); Braken-
siek & Ragozzine (2016)). Recently Brakensiek & Ragozzine
(2016) showed how differential geometry techniques can be
used to calculate multi-planet transit probabilities by map-
ping transits onto a celestial sphere. In this paper we perform
a similar analysis, however we focus on regions where pairs
of planets can be observed to transit. We also give an explicit
analytical form using simple vector relations to describe the
boundaries of such transit regions.

The multi-planet systems observed by Kepler appear to
be mostly stable on long timescales (Lissauer et al. (2011);
Pu & Wu (2015)). Dynamical interactions with a potential
outer planet on an inclined orbit would therefore be expected
to occur on secular timescales. Recent analytical work by
Lai & Pu (2017) suggests that such interactions can lead
to large mutual inclinations in an inner planetary system,
assuming that the direction of the angular momentum vec-
tor of the outer planet is fixed. We build on this work by
deriving analytical relations for the mutual inclination that
can be induced in an inner planetary system by a general
planetary companion. We then simplify this result specifi-
cally for when the companion is on a wide orbit. Combining
this result with our robust analytical treatment of transit
probabilities, we can then derive a simple relation describ-
ing how the presence of an outer planetary companion affects

the transit probability of an inner system due to long term
interactions.

We also complement recent N-body simulations of
Kepler-like systems interacting with an inclined outer plan-
etary companion shown in Mustill et al. (2016) and Hansen
(2017) by using our robust treatment of transit probabilities
to consider whether an outer planet with a range of masses,
semi-major axes and inclinations can reduce an underlying
population of Kepler double transiting systems enough to
recover the observed number of single transiting systems
through long term interactions only. We also investigate
whether the presence of specific wide orbit planets in multi-
planet systems preferentially predicts single transiting plan-
ets with a given distribution of radii and semi-major axes.

In §2 we overview our semi-analytical method for calcu-
lating the transit probability of two mutually inclined plan-
ets. In §3 we derive a simplified form to describe the evolu-
tion of the mutual inclination between two planets due to
presence of an outer planetary companion. We show how this
mutual inclination affects the transit probability of the two
inner planets in §4. In §5 we apply this work to Kepler-56,
Kepler-68, HD 106315 and Kepler-48 to place constraints on
the inclination of the outer planets in these systems. In §6
we investigate whether a wide orbit planet in Kepler systems
can decrease the number of observed two planet transiting
systems enough to recover the observed abundances of sin-
gle transiting systems. We finally discuss this work in §7 and
conclude in §8.

2 SEMI-ANALYTICAL TRANSIT
PROBABILITY

A planet on a circular orbit with a semi-major axis a and ra-
dius Rp subtends a band of shadow across the celestial sphere
due its orbital motion. We refer to this band of shadow as
the transit region (Ragozzine & Holman (2010); Brakensiek
& Ragozzine (2016)). The probability that an observer will
view an individual transit event of this planet, assuming
that the system is viewed for long enough, is equal to the
number of viewing vectors that intersect the transit region,
divided by the total number of possible viewing vectors. Per-
haps more intuitively, this is equivalent to the surface area
of the transit region divided by the total surface area of the
celestial sphere.

To calculate the area of a transit region on the celestial
sphere first consider that the area of a given surface element
(S) on a unit sphere is equal to

S =
∫ θ0

0

∫ φ0

0
sin θ ′dθ ′dφ′ =

[
1 − cos θ ′

]θ0
0

[
φ′

]φ0
0 , (1)

where θ ′ is the polar angle and φ′ is the azimuthal angle.
A given area on the celestial sphere can therefore be repre-
sented on a 2d plane of 1 − cos θ ′ vs. φ′, from 0 → 2 and 0
→ 2π respectively, such that the 2d plane has a total sur-
face area of 4π. Below we show how the boundaries of a
given transit region traverses this 2d plane. This allows for
the area contained within these boundaries and therefore the
associated transit probability to be calculated.

MNRAS 000, 1–24 (2017)



Transit Probabilities in Evolving Secular Systems 3

Figure 1. The coordinate system used to show how a transit
region traverses the surface of a celestial sphere. The dashed line

represents an orbital plane inclined to a fixed reference plane by
∆i. The direction n̂ is normal to the orbital plane. The directions

r̂, r̂1 and r̂2 trace the central, lower and upper boundaries of a

transit region respectively.

Figure 2. The surface of a celestial sphere represented on a 2d

plane. The dotted lines represent the centre of a transit region for
a planet inclined to a fixed reference plane by ∆i. The solid lines

refer to the boundaries of such transit regions for when R?/a =
0.25. The area within these transit regions are identical, giving
an identical single transit probability equal to 0.25.

2.1 Single Planet Case

Consider some fixed reference plane where [X̂, Ŷ] define a
pair of orthogonal directions in this plane, and Ẑ defines
a direction orthogonal to this plane as shown in Figure 1.
The fixed reference frame in Figure 1 is assumed to be cen-
tred on a host star with radius R?. The line of sight of an
observer is considered to be randomly oriented over the sur-
face of a celestial sphere with respect to this fixed reference

plane. Now consider that the orbital plane of a planet with
a semi-major axis a and radius Rp, is inclined to the fixed
reference plane by ∆i, with the intersection between the two
planes occurring along the X̂ direction. The direction of the
normal of the orbital plane is given by n̂. The position of
a planet in the orbital plane is defined by the direction r̂
which makes the angles θ and φ with the Ẑ and X̂ direc-
tions respectively. Hence r̂ traces the centre of the transit
region with respect to the fixed reference plane. As n̂ · r̂ = 0,
where n̂ = [0, sin∆i, cos∆i] and r̂ = [sin θ cos φ, sin θ sin φ, cos θ]
it follows that

− sin∆i sin θ sin φ + cos∆i cos θ = 0. (2)

Hence eq. (2) defines how the centre of a transit region
inclined to a fixed reference plane by ∆i traverses a celestial
sphere. This is shown by the dashed lines in Figure 2 for
different values of ∆i, where the surface area of the celestial
sphere is shown on a 2d plane defined by eq. (1). We note
that at the special case where ∆i = 90◦, φ can only take
values of 0 or π.

Similarly the directions that define the boundaries of
the transit region can be given by r̂1 and r̂2 which makes
the angles θ1, θ2 and φ1, φ2 with the Ẑ and X̂ directions re-
spectively, shown in Figure 1. The boundaries of the tran-
sit region also subtend an angle ±θsub from the orbital
plane where sin θsub = R?/a assuming R? � Rp (Borucki &
Summers (1984)). As r̂1 = [sin θ1 cos φ1, sin θ1 sin φ1, cos θ1],
r̂2 = [sin θ2 cos φ2, sin θ2 sin φ2, cos θ2] and n̂ · r̂1 = R?/a and
n̂ · r̂2 = −R?/a, it follows that

− sin∆i sin θ1 sin φ1 + cos∆i cos θ1 = R?/a, (3)

− sin∆i sin θ2 sin φ2 + cos∆i cos θ2 = −R?/a. (4)

Hence eq. (3) and eq. (4) describe how the lower and up-
per boundaries of the transit region for a planet inclined
to a fixed reference plane by ∆i traverse a celestial sphere.
The solid lines in Figure 2 show these boundaries for dif-
ferent values of ∆i, where R?/a = 0.25. This value of R?/a
might be considered to be unrealistically large and is used
for demonstration purposes only. In Appendix A we further
discuss how the values of (θ1, φ1) and (θ2, φ2) in eq. (3) and
eq. (4) respectively would be expected to change as ∆i is
increased from ∆i = 0→ 90◦.

An integration between the upper and lower boundaries
of a transit region divided by the total surface area of the
celestial sphere gives the associated single transit probability
of the planet (R?/a, Borucki & Summers (1984)). All of the
transit regions shown in Figure 2 for different ∆i therefore
contain identical areas and hence have identical single transit
probabilities equal to 0.25. We note that if the planet has
a non-negligible radius then the single transit probability
becomes (R± Rp)/a for grazing and full transits respectively.
Throughout this work however we assume that Rp � R?.

2.2 Two Planet Case

Consider now a system containing two planets, both of which
are on circular orbits with semi-major axes and radii of a1,
a2 and Rp1, Rp2 respectively, where a1 < a2 and the orbital
planes are mutually inclined by ∆i (we give an exact defi-
nition for mutual inclination in §3). The probability that a
randomly oriented observer will view both planets to transit

MNRAS 000, 1–24 (2017)



4 M. J. Read et al.

(assuming the system is observed for long enough) is equal
to the overlap area between the transit regions of both plan-
ets, divided by the total area of the celestial sphere. We refer
to this probability as the double transit probability.

Therefore, using eq. (3) and eq. (4) to find where the
boundaries of the transit regions of each planet intersect,
an outline of the overlap between the transit regions can
be determined. The area of this overlap can subsequently
be calculated by an appropriate integration, which when di-
vided by 4π gives the double transit probability. How the
double transit probability changes as a function of ∆i is
shown by the blue line in Figure 3, for when R?/a1 = 0.2 and
R?/a2 = 0.1. We note that this result is consistent regardless
of the choice of reference plane and the orientation of the
orbital planes of both planets with respect to this reference
plane (see Ragozzine & Holman (2010) for a further discus-
sion). That is, the double transit probability depends on the
mutual inclination between the two planets only (in addition
to the physical size of the respective transit regions).

Depending on the value of ∆i, the double transit prob-
ability (P herein) can be split into three regimes (also
discussed in Ragozzine & Holman (2010); Brakensiek &
Ragozzine (2016)).

(1) For low values of ∆i, the transit region of the outer
planet is enclosed within that of the inner planet. The double
transit probability is therefore equal to R?/a2.

(2) ∆i is large enough that the transit region of one
planet is no longer fully enclosed inside the other, however
there is still partial overlap for all azimuthal angles on the
celestial sphere. The transition to this regime occurs for a
value of ∆i = I1, which causes θ1 in eq. (3) for both planets
to be equal at φ1 = π/2. Evaluating eq. (3) at this point
gives

sin I1 = −κ2(1 − κ2
1 )

1/2 + κ1(1 − κ2
2 )

1/2, (5)

where κ1 = R?/a1 and κ2 = R?/a2 for simplicity. We note
that determining the overlap area of the two transit regions
with an exact analytical expression in this regime is difficult
and is commonly calculated by Monte Carlo techniques (e.g.
Ragozzine & Holman (2010); Johansen et al. (2012); Becker
& Adams (2016); Mustill et al. (2016); Hansen (2017)).

(3) For large ∆i, the transit regions only overlap at the
intersection of the two orbital planes. The transition to this
regime occurs when ∆i = I2, where θ1 for the inner planet is
equal to θ2 for the outer planet at φ1 = φ2 = π/2. Evaluating
eq. (3) and (4) here gives

sin I2 = κ2(1 − κ2
1 )

1/2 + κ1(1 − κ2
2 )

1/2. (6)

The values of I1 and I2 are shown by the green and red lines
respectively in Figure 3. If it is assumed that the transit
region overlap in regime 3 can be represented as a 2d par-
allelogram, Ragozzine & Holman (2010) showed the double
transit probability can be approximated by1

P =
2R2
?

πa1a2 sin∆i
. (7)

For large ∆i therefore, the double transit probability

1 For greater accuracy, we include a 2/π factor here that is not
included in Ragozzine & Holman (2010).

Figure 3. The double transit probability as a function of mu-

tual inclination between two planets from our method (blue line)
for when R?/a1 = 0.2 and R?/a2 = 0.1. The dashed black lines

represent the associated analytical estimate given by eq. (7). The

green and red lines represent which inclination cause the double
transit probability to go from regime 1 to 2 and regime 2 to 3,

with the regimes being defined in §2.2.

predicted by eq. (7) tends to a value of 2R2
?/πa1a2. We show

eq. (7) as the black dashed line in Figure 3. We note that in
Ragozzine & Holman (2010) it was assumed that the double
transit probability transitions straight from regime (1) to

(3) at ∆i = arcsin
(

2
π ·min(R?/a1, R?/a2)

)
1.

For ∆i > I2 our method predicts a double transit prob-
ability that agrees well with the analytical estimate from
Ragozzine & Holman (2010). However there is a clear dis-
crepancy for I1 < ∆i < I2, for when there is partial overlap
between the transit regions at all azimuthal angles. This
highlights the need for semi-analytical methods like the one
suggested here over purely analytical relations, to robustly
calculate double transit probabilities at all values of ∆i. We
note that our method also agrees well with the Monte Carlo
treatment of double transit probabilities shown in Ragozzine
& Holman (2010).

Calculating transit probabilities using the method out-
lined here is significantly more computationally efficient
than equivalent Monte Carlo methods, as it is only necessary
to solve combinations of eq. (3) and (4) for different plan-
ets to find where transit regions overlap. From integrating
around this overlap, the associated double transit probabil-
ity is also exact and not subject to Monte Carlo noise effects
from under-sampling the total number of line of sight vec-
tors.

3 SECULAR INTERACTIONS

3.1 N planet system

Consider a system of N secularly interacting planets in which
planet j has a semi-major axis aj and mass mj . The inclina-
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tion and longitude of ascending node of planet j are given
by Ij and Ωj respectively, and can be combined into the

associated complex inclination yj = IjeiΩ j . Assuming that
the vector involving all the planet’s orbital planes is given
by y = [y1, y2, ..yN ], the evolution of complex inclinations
in the low inclination and eccentricity limit can be given by
Laplace - Lagrange theory in the form

Ûy = iBy, (8)

(Murray & Dermott (1999)) where B is a matrix with ele-
ments given by

Bjk =
1
4

nj

(
mk

M? + mj

)
αjk α̃jkb(1)3/2(αjk ) ( j , k)

Bj j = −
N∑

k=1, j,k
Bjk,

(9)

j and k are integers associated with each planet, M? and
mi are the masses of the star and planet i, nj is the mean

motion of planet j where n2
j a

3
j
= G(M? + mj ), αjk = α̃jk =

aj/ai for aj < ak and αjk = ak/aj and α̃jk = 1 otherwise,

and b(1)3/2(αjk ) corresponds to a Laplace coefficient given by

b(ν)s (α) =
1
π

∫ 2π

0

cos(νx)dx
(1 − 2α cos(x) + α2)s

α < 1. (10)

Eq. (8) can be solved to show that the evolution of y is
given by a superposition of eigenmodes associated with each
eigenfrequency fi of the matrix B

yj (t) =
N∑
k=1

Ijkei( fk t+γk ), (11)

where Ijk are the eigenvectors of B scaled to initial bound-
ary conditions and γk is an initial phase term. If it is as-
sumed that all objects are spherically symmetric, additional
terms in the diagonal elements of B in eq. (9) (e.g. stel-
lar oblateness) need not be included. A choice of reference
frame for the inclination also becomes arbitrary, leading to
one of the eigenfrequencies equalling zero (c.f. Murray &
Dermott (1999)). It is only meaningful therefore to describe
a mutual inclination between pairs of planets, with the in-
variable plane commonly being chosen as a reference plane.
The invariable plane is defined as being perpendicular to
the total angular momentum vector of a system. The mu-
tual inclination is then the angle between individual angular
momentum vectors of a pair of planets. The inclination solu-
tion described by eq. (11) also becomes simplified when the
invariable plane is taken as a reference plane as the eigen-
vector associated with the zero value eigenfrequency is also
equal to zero.

3.2 Two planet system with an inclined
companion

Consider the same general two planet system from §2.2. As-
sume that the two planets are initially coplanar. Consider
now a third planet on an external circular orbit, with a mass
and semi-major axis of m3 and a3 respectively such that
a3 > a2. The orbital plane of this external planet is initially
mutually inclined to the inner planets by ∆i. We assume that
each of the planets interact through secular interactions only

and that inclinations and eccentricities remain small, allow-
ing for application of Laplace - Lagrange theory. Assuming
that the invariable plane is taken as a fixed reference plane,
the initial inclination of the third planet i3 is given by

i3 = arctan
[
(L1 + L2) sin∆i

L3 + (L1 + L2) cos∆i

]
where Lj = mja

1/2
j

and is proportional to the angular mo-

mentum in the low eccentricity limit. The initial inclination
of the inner planets with respect to the invariable plane is
therefore i1 = ∆i − i3.

From eq. (11) the complex inclination of each of the
inner two planets with respect to the invariable plane evolves
in the form of

y1 = I11ei( f1t+γ1) + I12ei( f2t+γ2)

y2 = I21ei( f1t+γ1) + I22ei( f2t+γ2),
(12)

where y1 and y2 are the complex inclinations of the inner-
most and second innermost planet respectively. The evo-
lution of the mutual inclination between the inner pair of
planets is hence given by

y1 − y2 = (I11 − I21)ei( f1t+γ1) + (I12 − I22)ei( f2t+γ2). (13)

The t = 0 boundary conditions give γ1 = π and γ2 = 0. Also
as y1(t = 0) = y2(t = 0) = i1, it follows from eq. (12) that
I11 − I21 = I12 − I22. The evolution of the mutual inclination
from eq. (13) is therefore is equivalent to

y1 − y2 = (I12 − I22)
(
ei( f1t+π) + ei f2t

)
. (14)

Hence the evolution of the instantaneous mutual inclination
between the inner pair of planets, ∆i12 = |y1 − y2 |, can be
calculated if the first and second elements of the eigenvector
associated with the f2 eigenfrequency are known. In Ap-
pendix B we fully solve eq. (8) to give I12 and I22 in terms
of physical variables. Here we simply say that

y1 − y2 = ∆iK
[
ei( f1t+π) + ei f2t

]
, (15)

where K is dependant on the masses and semi-major axes of
the three planets, shown explicitly in Appendix B. We note
that the maximum value of K ≈ 1, implying that the maxi-
mum value of the mutual inclination between the inner pair
of planets from eq. (14) is twice the initial mutual inclina-
tion with the external third planet i.e. max|∆i12| = 2∆i. For
given values of masses and semi-major axes of the inner pair
of planets therefore, the evolution of the mutual inclination
between them is dependant on three quantities, a3, m3 and
∆i.

The left panels of Figure 4 show how max|∆i12| changes
as a function of different combinations of a3, m3 and ∆i in eq.
(15) for an example system where a1, a2 = 0.2, 0.5au and m1,
m2 = 10M⊕ respectively. We note that the assumptions of
Laplace-Lagrange theory are expected to break down when
∆i � 20◦. Larger inclinations are included for demonstration
purposes only. It is evident that as the third planet tends to
a limit where it is on a wide orbit, with a low mass and low
initial mutual inclination, the maximum mutual inclination
between the inner pair of planets becomes small as one might
expect.

MNRAS 000, 1–24 (2017)



6 M. J. Read et al.

Figure 4. The maximum mutual inclination, max |∆i12 |, between two planets on circular, initially coplanar orbits with semi-major axis of

0.2, 0.5au and masses of 10M⊕ respectively, from the secular interaction with an outer third planet. The value of max |∆i12 | calculated by

the full Laplace-Lagrange solution from eq. (15) is given by the colour scale on the left panels. The right panel colour scales give max |∆i12 |
calculated by the simplified Laplace-Lagrange solution for when a3 � a1, a2, given by eq. (16) and eq. (17). For the top panels ∆i = 10◦,
for the middle panels m3 = 1MJ and for the bottom panels a3 = 2au. It is important to note that the assumptions of Laplace-Lagrange

theory break down when ∆i � 20◦. Larger inclinations are only included in this Figure to aid comparison between max |∆i12 | predicted
by the full and simplified Laplace-Lagrange theory solutions.

MNRAS 000, 1–24 (2017)



Transit Probabilities in Evolving Secular Systems 7

3.3 Companion wide orbit approximation

In §4 we look to investigate how the evolving mutual inclina-
tion between the inner pair of planets affects the associated
double transit probability, for the specific case where the
external third planet is assumed to be on a wide orbit. For
a3 � a1, a2, certain individual and combinations of B matrix
elements from eq. (9) become small and we find that eq. (15)
can be simplified to

y1 − y2 ≈ ∆iKsimp
[
ei( f1t+π) + ei f2t

]
, (16)

where

Ksimp =
3m3a7/2

2

m2a1/2
1 a3

3

1

b1
3/2

(
a1
a2

)
(1 + (L1/L2))

. (17)

Here it is assumed that as a3 � a1, a2, certain Laplace coeffi-
cients from the B matrix elements can be simplified, specif-
ically b1

3/2(α) ≈ 3(α) (Murray & Dermott (1999)). Similar

simplifications can be made to each of the eigenfrequencies,
for which

f1 ≈ −
πm2a1/2

1

2M1/2
? a2

2

b1
3/2

(
a1
a2

)
(1 + L1/L2) ,

f2 ≈ −
3πm3a3/2

2

2M1/2
? a3

3

1
1 + L1/L2

.

(18)

As eq. (15) shows that the maximum value of the mu-
tual inclination between the inner pair of planets cannot be
larger than twice the initial mutual inclination with the wide
orbit planet (max|∆i12 | ≯ 2∆i) we assume that the maximum
value of the mutual inclination between the inner two plan-
ets predicted by eq. (16) is

max|∆i12 | ≈ 2∆iKsimp for Ksimp < 1,
≈ 2∆i otherwise.

(19)

The right panels of Figure 4 show max|∆i12| predicted
by eq. (19) and eq. (17) using the same planet parameters
as shown in the left panels. We find that when a3 &1.25au,
the simplified form for max|∆i12| from eq. (19) and eq. (17)
agrees with the full Laplace - Lagrange solution to within
∼ 25% for all values of m3 and ∆i. For a3 ∼1au, the simplified
form of max|∆i12| begins to break down and eq. (19) can
underestimate max|∆i12| from the full Laplace - Lagrange
solution by up to a factor of 2.

This estimate is similar to the result derived by Lai &
Pu (2017), who assumed that the angular momentum vector
direction of the outer inclined planet is fixed in time. They
find that the maximum mutual inclination that can be in-
duced in an inner pair of planets depends on the strength of
the coupling between them (parametrized by ε12 in their eq.
12). Assuming inclinations are small we find eq. (19) agrees
with the equivalent prediction of max|∆i12| from Lai & Pu
(2017) if Ksimp = ε12. Indeed, Ksimp and ε12 are almost identi-
cal despite the different derivation techniques (e.g. we derive
the full Laplace- Lagrange solution and then simplified as-
suming a3 � a1, a2), apart from Ksimp contains an additional

factor of a1/2
1 a3/2

2 whereas ε12 contains a factor of (a2
2 − a2

1).

By considering different combinations of a1 and a2 and com-
paring to the value of max|∆i12| given by the full solution in
Appendix B, we find that neither eq. (19) and (17) or the
equivalent equation from Lai & Pu (2017) is favoured as a
more accurate approximation, since which is closer to the
full solution depends on the exact parameters.

4 COMBINING TRANSIT PROBABILITIES
WITH SECULAR THEORY

Considering two inner, initially coplanar planets and an
outer inclined planetary companion, we combine the analy-
sis of transit probabilities from §2 with secular interactions
from §3 in two main ways. First in §4.1, we assume that the
outer planet is not necessarily on a wide orbit. The evolu-
tion of the mutual inclination between the inner planets is
therefore assumed to be given by the full Laplace-Lagrange
solution derived in eq. (15). The double transit probability
of the inner two planets during this evolution is then calcu-
lated through the method outlined in §2. This provides the
most accurate prediction for how the double transit prob-
ability of two inner planets evolves (in the low inclination
limit) considering a given outer planetary companion. We
make use of this method for a detailed discussion of how an
outer planet affects an inner population of Kepler systems
in §6.

Second, in §4.2 we assume that the outer planetary com-
panion is on a significantly wide orbit. The evolution of the
mutual inclination between the inner two planets is there-
fore given by eq. (16) and eq. (17). Here we look to give a
simple analytical form to describe the double transit proba-
bility of two inner planets, due to secular interactions with a
given outer planetary companion. We make use therefore of
simple analytical relations such as eq. (7) to describe double
transit probabilities. Comparing with the work in §4.1 al-
lows for the accuracy of these approximations to be judged.
We demonstrate in §5 how simple constraints can be placed
on the inclination of an outer companion in specific systems
using this method.

4.1 Two planet system with an inclined
companion

From Figure 3 it is clear that if the amplitude of the mutual
inclination between the inner two planets is large, then the
associated double transit probability, P, will only be at a
maximum value for a small proportion of the secular evolu-
tion. The presence of an outer inclined planet may therefore
result in a significant reduction in the mean double transit
probability 〈P〉 on long timescales. Figure 5 shows how both
the mutual inclination and the double transit probability
evolve with time for two inner planets from Figure 4, which
are perturbed by an outer planetary companion with a semi-
major axis, mass and inclination of a3 = 2au and m3 = 1MJ
and ∆i = 5◦ respectively. Indeed, P is only at a maximum
value for a small proportion of the secular evolution leading
to a significant reduction in 〈P〉 compared with if the outer
planet were not present.

Furthermore, the left panels of Figure 6 show how 〈P〉
changes due to perturbations from an outer planet with the
same range of parameters considered in Figure 4. As one may
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Figure 5. (left): The evolution of the mutual inclination of the two inner planets considered in Figure 4 due to secular interactions with

a third planet with a3 = 2au, m3 = 1MJ and ∆i = 5◦. (right): The associated evolution of the double transit probability.

expect, through comparing the left panels of Figures 4 and
6, an outer planet which induces a large value of max|∆i12|
also causes a significant reduction in the mean double transit
probability of the inner two planets and vice versa for small
values of max|∆i12|.

The left panels of Figure 6 also suggest a clear bound-
ary of a3, m3 and ∆i, above which the outer planet causes
〈P〉 to be significantly reduced and below which 〈P〉 is un-
changed. From Figure 3, the double transit probability of
the two inner planets can be considered to be significantly
reduced when ∆i12 > I1, where I1 is given by eq. (5). We as-
sume therefore that the boundary where 〈P〉 is significantly
reduced occurs when max|∆i12| ≈ I1. The values of a3, m3
and ∆i which give this boundary are shown by the black lines
in the left panels of Figure 6.

4.2 Companion wide orbit approximation

Considering the simplified evolution of the mutual inclina-
tion from eq. (16) and (17) for when a3 � a1, a2, here we
estimate the value of the mean double transit probability
itself. We assume that 〈P〉 is dominated by the maximum or
minimum value of the double transit probability, Pmax and
Pmin respectively, depending on whether max|∆i12| is greater
than I1. We assume that I1 ≈ R?/a1 − R?/a2 from eq. (5) for
R?/a1, R?/a2 � 1. From Figure 3, the value of Pmax = R?/a2,
however a value of Pmin is more difficult as no specific analyt-
ical estimate exists. We therefore assume Pmin can be given
by the estimate from Ragozzine & Holman (2010) shown by
eq. (7). We note that this approximation for Pmin would be
expected to break down if max|∆i12| predicts partial over-
lap between the transit regions of the inner planets for all
azimuthal angles (see Figure 3). Assuming that the masses
and semi-major axes of all the planets are known, in addi-
tion to the inclination of the outer planet and that max|∆i12|
is given by the simplified Laplace - Lagrange solution from

eq. (19), 〈P〉 can be estimated by

〈P〉 ≈ R?/a2 for max|∆i12 | < R?/a1 − R?/a2

≈
2R2
?

πa1a2 sin(max|∆i12 |)
otherwise,

(20)

The right panels of Figure 6 show the value of 〈P〉 pre-
dicted by eq. (20), using the same planet parameters as those
in the left panel. The black lines are identical to those in the
left panels of Figure 6 and are included to aid comparison
between both sides of the Figure.

The above assumptions bias the double transit proba-
bility toward spending a greater proportion of the secular
evolution at Pmin. As such, eq. (20) can under predict 〈P〉,
by a factor of up to 4 when comparing the left and right pan-
els of Figure 6. We suggest therefore that eq. (20) should be
used as a first order approximation of 〈P〉 only.

5 APPLICATION TO SPECIFIC SYSTEMS

Here we consider real systems observed to have both transit-
ing planets and an additional outer, non-transiting planet.
Due to the inherent faintness of Kepler stars, follow up obser-
vations to detect non-transiting planets, namely by RV stud-
ies, are challenging. Thus the number of systems observed
with such architectures are relatively sparse. We consider
three of these systems: Kepler-56, Kepler-68 and Kepler-48
in addition to HD 106315. As RV surveys are largely insensi-
tive to planetary inclinations, we apply eq. (20) with eq. (17)
to place constraints on the inclination of the non-transiting
planets in these systems.

Assume that, as the transiting planets are indeed tran-
siting, the mean double transit probability is at a maximum.
Rearranging eq. (20) one finds

∆icrit ≈
R?/a1 − R?/a2

2Ksimp
for Ksimp < 1

≈ R?/a1 − R?/a2
2

otherwise,

(21)
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Figure 6. The mean double transit probability of two planets 〈P〉 from Figure 4, which are being secularly perturbed by a third planet
on a mutually inclined orbit according to the full Laplace - Lagrange solution (left panels) and the simplified Laplace-Lagrange solution

for when the third planet is assumed to be on a wide orbit. The black lines show the boundary where the maximum mutual inclination
between the inner planets exceeds I1 from eq. (5) and 〈P〉 is assumed to be significantly reduced. The black lines on the respective left
and right panels are identical and included to aid comparison. As noted in Figure 4, Laplace - Lagrange theory is expected to break

down for ∆i � 20◦. Larger inclinations are only included here for demonstration purposes only.
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where ∆icrit is the inclination of the non-transiting planet re-
quired to significantly reduce the mean probability that the
inner planets are observed to transit due to secular inter-
actions. We note that eq. (21) assumes that the transiting
planets are initially coplanar. However if these planets were
initially mutually inclined by a small amount, a smaller sec-
ular perturbation from the outer planet would be required
to significantly reduce the mean probability that the inner
planets are observed to transit. In this case, icrit from eq.
(21) would be reduced.

5.1 Kepler-56

Kepler-56 is a red giant star with a mass and radius of M� =
1.32 ± 0.13 M� and R� = 4.23 ± 0.15R� respectively (Hu-
ber et al. (2013)), which is observed to host three planets.
Interestingly, Kepler-56 represents one of the few red giant
stars observed to host a planetary system (Lillo-Box et al.
(2014); Ciceri et al. (2015); Quinn et al. (2015); Pepper et al.
(2016)). The two inner planets (b, c) are observed to tran-
sit with periods of 10.5 and 21.4 days respectively (Borucki
et al. (2011); Steffen et al. (2013); Huber et al. (2013); Had-
den & Lithwick (2014); Holczer et al. (2016); Morton et al.
(2016)) and have masses of 22.1+3.9

−3.6M⊕ and 181+21
−19M⊕ re-

spectively (Huber et al. (2013)). Keck/HIRES and HARPS-
North observations have revealed a non-transiting giant
planet (d) with a period of 1002±5 days and minimum mass
of 5.62±0.38MJ (Huber et al. (2013); Otor et al. (2016)). An
interesting quirk of this system is that the transiting planets,
while being roughly coplanar, are misaligned to the stellar
spin axis by ∼40◦ (Huber et al. (2013)). It is unclear if this
large obliquity is caused by long term dynamical interac-
tions with a highly inclined companion, such as Kepler-56d,
or from the star being inherently tilted to the disk from
which the planets formed (Li et al. (2014)).

Applying eq. (21), we find that icrit = 704◦. This unphys-
ically large value means that, regardless of how Kepler-56d
is inclined in this system, the mean double transit probabil-
ity of the inner two transiting planets cannot be significantly
reduced. That is, we suggest that the transiting planets in
Kepler-56 are not strongly affected by the secular pertur-
bations of Kepler-56d, regardless of its mutual inclination.
This is a similar result to that found in Lai & Pu (2017)
who also find that the inner planets are strongly coupled
against external secular interactions. We therefore cannot
place any constraint on the inclination of Kepler-56d using
this method. We note however that this does not preclude
that the 40◦ misalignment from the stellar spin axis comes
from an inclined outer companion, since both inner planets
could be inclined together without significant mutual incli-
nation.

5.2 Kepler-68

Kepler-68 is a roughly solar type star with a mass and radius
of 1.08±0.05M� and 1.24±0.02R� respectively (Gilliland
et al. (2013); Marcy et al. (2014)). It hosts two transiting
planets (b, c) with periods of 5.4 and 9.6 days respectively
(Gilliland et al. (2013); Marcy et al. (2014); Van Eylen &
Albrecht (2015); Holczer et al. (2016); Morton et al. (2016))
and fitted masses of 5.97±1.70 and 2.18±3.5M⊕ respectively

(Marcy et al. (2014)). Keck/HIRES RV follow up of this
system detected a non-transiting planet (d) with a period of
625±16 days with a fitted mass of 267±16M⊕ (Marcy et al.
(2014)).

Applying eq. (21) we find icrit = 244◦. Similar to Kepler-
56 therefore, regardless of the mutual inclination of Kepler-
68d, the mean double transit probability of the inner two
transiting planets cannot be significantly reduced by secular
perturbations. We therefore cannot place a constraint on
the inclination of Kepler-68d using this method. We note
that Kepler-68d can indeed have a large inclination without
affecting the overall stability of the system according to a
suite of N-body simulations, which suggest that Kepler-68d
is inclined by ∆i < 85◦ (Kane (2015)).

5.3 HD 106315

HD 106315 is a bright F dwarf star at a distance d =
107.3 ± 3.9pc (Gaia Collaboration et al. (2016)) with mass
and radius of 1.07±0.03M� and 1.18±0.11R� respectively
(Morton (2012); Petigura (2015); Crossfield et al. (2017)).
Recent K2 observations detect two transiting planets (b, c)
with periods of 9.55 and 21.06 days respectively and radii
of 2.23+0.30

−0.25 and 3.95+0.42
−0.39R⊕ respectively (Crossfield et al.

(2017); Rodriguez et al. (2017)). Mass-radius relationships
suggest these planets have masses of 8 and 20M⊕ respec-
tively (Weiss et al. (2016); Wolfgang et al. (2016); Crossfield
et al. (2017)). Further Keck/HIRES RV observations also
indicate the presence of a third outer companion planet (d)
with a period of Pd & 80 days, which has a mass of md &1MJ
(Crossfield et al. (2017)). As the exact period of this outer
planet is unknown we consider two possibilities where the
outer planet has a period of Pd = 80 days and Pd = 365
days respectively. Assuming Pd = 80 days implies a mass of
md = 1MJ (Winn et al. (2009); Crossfield et al. (2017)). Ap-
plying eq. (21) with this outer planet gives icrit = 1.1◦. This
suggests that if the outer planet had a period of Pd = 80
days, it must have an inclination of ∆i . 1.1◦, otherwise
the mean probability of observing the inner two planets to
transit would be significantly reduced due to the secular in-
teraction. Conversely, if the outer planet is assumed to be
further out with Pd = 365 days, implying a mass of ∼7MJ,
eq. (21) suggests that icrit = 2.4◦. That is, if the outer planet
has a period of Pd = 365 days, it must have an inclination
of ∆i . 2.4◦, otherwise the secular interaction would signif-
icantly reduce the mean probability that the inner planets
are observed to transit.

The mutual inclination of the outer planet might also be
constrained through astrometric observations of HD 106315
with ESA’s Gaia mission (Perryman et al. (2001); Casertano
et al. (2008); Sozzetti et al. (2014); Perryman et al. (2014);
Sahlmann et al. (2015)). The astrometric displacement of
the host star due to the presence of a planet is defined by

α =

(
mp
M?

) ( ap
1au

) (
d

1pc

)−1
arcsec, (22)

with the astrometric signal-to-noise equal to S/N =

α
√

Nobs/σ, where Nobs is the scheduled number of astromet-
ric measurements (Nobs = 36 for HD 1063152) with typical

2 http://gaia.esac.esa.int/gost/
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Figure 7. The mutual inclination between the respective plan-

ets in Kepler-48, when the non-transiting planet, Kepler-48e is
initially mutually inclined by ∆i = 10◦. The black dashed line

shows the evolution of the mutual inclination between the inner

two transiting planets with the outer transiting planet, for when
the inner two planets are treated as a single body with an equal

orbital angular momentum.

uncertainties of σ = 40µas (de Bruijne (2012)). If S/N > 20,
the orbital inclination can be constrained to a precision of
< 10◦ (Sahlmann et al. (2015)). We find that for the exam-
ple periods and masses considered above for HD 106315d
that S/N < 10. We therefore expect that the inclination of
the above examples of HD 106315d cannot be constrained
using Gaia astrometry. However if HD 106315d is outside of
∼1.3au, (implying a mass of & 12MJ) eq. (22) suggests that
S/N > 20 such that the inclination of HD 106315d should
be constrained by Gaia astrometry. Further RV follow-up of
this system will allow for greater constraints to be placed on
the mass and the orbit of HD 106315d, which in turn allow
for greater constraints to be placed on the inclination, either
through potential astrometry measurements or through our
model represented by eq. (21).

5.4 Systems with three transiting planets and a
wide orbit companion

Here we generalise the affect a wide orbit planet has on the
transit probabilities of three inner transiting planets. Con-
sider Kepler-48 as an example of such a system. Kepler-
48 has a mass and radius of M? = 0.88±0.06M� and
R? = 0.89±0.05R� respectively. It hosts three transiting
planets (b,c,d) with periods of 4.78, 9.67 and 42.9 days
and fitted masses of 3.94±2.10, 14.61±2.30 and 7.93±4.6M⊕
respectively (Steffen et al. (2013); Marcy et al. (2014);
Hadden & Lithwick (2014); Holczer et al. (2016); Morton
et al. (2016)). Keck/HIRES RV analysis also detects a non-
transiting planet (e) with a period and fitted mass of 982±8
days and 657± 25M⊕ respectively (Marcy et al. (2014)).

Returning to the derivation of the secular interaction
in §3, the initial inclination of the non-transiting planet, ie,

with respect to the invariable plane can be generalised to

ie = arctan
©«

sin∆i
( 3∑
n=1

Ln

)
Le + cos∆i

( 3∑
n=1

Ln

) ª®®®®¬
, (23)

where Le = mea1/2
e and is proportional to the angular mo-

mentum of Kepler-48e in the low eccentricity limit and

Ln = mna1/2
n for either Kepler-48b, c, or d. The initial incli-

nation of the transiting planets is therefore equal to ∆i − ie.

As the strength of the secular interaction between plan-
ets largely depends on their separation (e.g. eq. (19)) we
assume that Kepler-48d will be affected most by perturba-
tions from the non-transiting planet. We demonstrate this in
Figure 7, which shows how the mutual inclination between
each of the transiting planets evolves assuming Laplace -
Lagrange theory (eq. (11)) and that Kepler-48e is initially
mutually inclined by ∆i = 10◦. The red line shows the mu-
tual inclination between Kepler-48b and c (∆ibc), the blue
between b and d (∆ibd), and the green between c and d (∆icd).
The mutual inclination between Kepler-48b and c is largely
unchanged and they remain roughly coplanar. Conversely
the mutual inclination between b and d and c and d is sig-
nificant and roughly equal throughout the secular evolution.
It can be assumed for Kepler-48 therefore that the inner two
transiting planets are largely unaffected by the secular per-
turbations of Kepler-48e, but both can become significantly
mutually inclined to the outer transiting planet.

As such, we assume that Kepler-48b and c can be
treated as a single body whose angular momentum is the
sum of Kepler48-b and c, reducing the system to a total of
three planets. With this approximation, the evolution of the
mutual inclination between Kepler-48b and c with d (∆ibc,d)
is shown by the dashed black line in Figure 7. It can be seen
that this way of treating Kepler-48b and c as a single body
gives a good approximation for the evolution of the mutual
inclination between Kepler-48b, c with d.

The initial mutual inclination of Kepler-48e which
causes a significant reduction in the mean probability of
the inner planets transiting, ∆icrit, can therefore be approx-
imated by eq. (21), where the value of Ksimp becomes

Ksimp =
3mea7/2

d

mda1/2
bc a3

e

1

b1
3/2

(
abc
ad

)
(1 + (Lbc/Ld))

, (24)

with the subscripts referring to a respective planet and the
subscript ’bc’ to the planet which has the same total angular
momentum as Kepler-48b and c.

We find that ∆icrit = 3.7◦. This suggests therefore that
the inclination of Kepler-48e ∆i . 3.7◦, otherwise the sec-
ular interaction would cause a significant reduction in the
mean probability that all three inner planets are observed
to transit. Under the simpler assumption that max|∆ibc,d|
. R?/ad, Lai & Pu (2017) also find that the inclination of
Kepler-48e, considering secular interactions only, must also
be small with ∆i . 2.3◦.
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Figure 8. The smoothed distribution of the radii and the semi-major axes of planets observed by Kepler to be in systems with a single
transiting planet (left) and in systems with two transiting planets (right). Pixel sizes are log(a) = 0.15 by log(Rp) = 0.1.

6 APPLICATION TO THE KEPLER
DICHOTOMY

As discussed in §1, Kepler has observed an excess of single
transiting systems which cannot be explained by geomet-
ric effects alone, commonly referred to as the Kepler di-
chotomy (Lissauer et al. (2011); Youdin (2011); Johansen
et al. (2012); Ballard & Johnson (2016)). This may sug-
gest that there is a population of inherently single transit-
ing systems in addition to a population of multi-planet sys-
tems with small inclination dispersions. However there may
also be a population of multi-planet systems where the mu-
tual inclination dispersion is large, increasing the probability
that only a single planet is observed to transit. Here we in-
vestigate whether both these types of multi-planet systems
can significantly contribute to the abundance of systems ob-
served by Kepler to have one and two transiting planets
respectively.

The Kepler systems we consider are discussed in §6.1. A
method for debiasing Kepler systems to a general population
of planetary systems is described in §6.2. We consider the
scenario where planets share some inherently fixed mutual
inclination in §6.3, before considering when this mutual in-
clination is evolving due to the presence of an outer inclined
planetary companion in §6.4. We note from the outset that
we do not consider Kepler systems observed to have more
than two planets. Instead we look to explore what effects
an outer planet might have on observables of a subset of
Kepler like systems, rather than observables of the whole
Kepler population. We discuss this assumption further in
§7.6.

6.1 Kepler Candidate Sample

We select planet candidates from the cumulative Kepler
objects of interest (KOI) table from the NASA exoplanet
archive3, accessed on 13/09/16. The vast majority of the

3 exoplanetarchive.ipac.caltech.edu

KOIs (∼ 97%) that survive our cuts detailed below, to make
it into our final sample are listed as being taken from the
most recent Q1-17 DR24 data release. This data release is of
particular note as it incorporates an automated processing
of all KOIs (Coughlin et al. (2016)).

Out of the initial 8826 KOIs we consider those which
orbit solar type stars, with surface temperatures and sur-
face gravities between 4200K < T < 7000K and 4.0 < log(g)
< 4.9 respectively. This reduces the total number of KOIs
to 7446. We also find the total number of unique Kepler
stars within this range (discussed in §7) is 164966 from the
’Kepler Stellar data’ table. We next remove false positives,
which refer to KOI light curves that are indicative of either
an eclipsing binary, having significant contamination from a
background eclipsing binary, showing significant stellar vari-
ability which mimics a planetary transit or where instrument
artefacts have produced a transit like signal (see Coughlin
et al. (2014); Rowe et al. (2014); Rowe & Thompson (2015);
Seader et al. (2015); Coughlin et al. (2016)). This reduces
our sample of KOIs (candidates herein) to 4072 objects. We
subsequently remove non planetary-like objects with radii
>22.4R⊕ (Borucki et al. (2011)), leaving 3757 objects, after
which we remove candidates with a SNR < 10 reducing the
possibility that a transit signal is caused by systematic back-
ground noise (Morton et al. (2016)), leaving 3327 objects.
Finally we remove candidates listed as not having a satis-
factory fit to the transit signal (Rowe et al. (2014); Rowe
& Thompson (2015)). This gives our final sample of 3255
objects. We note that our choice of cuts means that KOI
systems can become reduced in multiplicity. We find that
our final sample includes systems which contain 1-6 candi-
dates with Ni = (1, 2, 3, 4, 5, 6) = (1951, 341, 117, 43, 15, 4)
e.g. 1951 systems with a single candidate, 341 systems with
two candidates etc. Herein, we consider the 1951 systems
observed by Kepler to have a single transiting planet and
the 341 systems observed to have two.

The smoothed distribution of the semi-major axis and
planetary radii for the single and double planet transiting
systems are shown in Figure 8. Comparing the left and right
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panels of Figure 8, there are types of planets which are
only present in single transiting systems. We briefly discuss
these differences here for future reference. Large planets with
short periods i.e. Hot Jupiters, are not present in Kepler sys-
tems with two transiting planets. Indeed, investigations into
the formation processes of Hot Jupiters predict a lack of
close companions (Wright et al. (2009); Steffen et al. (2012);
Mustill et al. (2015); Huang et al. (2016), see WASP-47 for
an exception, Becker et al. (2015); Almenara et al. (2016)).
Long period planets are also more abundant in the popula-
tion of single transiting systems. This may not necessarily
indicate that long period planets inherently favour being in
single transiting systems, but instead they might be the in-
ner planet of a higher multiplicity system where the outer
planets are on too long a period to produce a significant
transit signal.

Finally there appears to be an over abundance in the
population of single transiting systems for planets with Rp .
2R⊕ at periods P < 10 days (. 0.03au) (see Lissauer et al.
(2011); Johansen et al. (2012); Steffen & Coughlin (2016);
Lopez & Rice (2016)). The formation processes which lead
to these types of planets are unclear. It is also unknown if
these objects are inherently rocky planets, or are the cores of
Neptune sized planets whose envelopes have been irradiated
(Dressing & Charbonneau (2015); Rogers (2015); Lopez &
Rice (2016)). If these outlying systems are largely ignored,
the question remains of whether the remaining planets in
single transiting systems are part of the same underlying dis-
tribution of higher order planetary systems; i.e. could these
single transiting systems contain similar planets which are
not observed to transit?

For our dynamical analysis it is not the radii of these
planets which is of relevance, rather their masses. We es-
timate the masses of planets according to the following
mass-radius relations. For radii less than 1.5R⊕ we use
the rocky planet mass-radius relation from Weiss & Marcy
(2014), where density (ρp) is related to radii (Rp) through

ρp = 2.43 + 3.39(Rp/R⊕)gcm−3. For radii 1.5 ≤ Rp ≤ 4R⊕,
we use the deterministic version of the probabilistic mass-
radius relation for sub-Neptune objects from Wolfgang et al.
(2016), where mass (Mp) is given by Mp/M⊕ = 2.7(Rp/R⊕)1.3.
Once radii become Rp &4R⊕ deterministic mass-radius rela-
tions become uncertain due to the onset of planetary con-
traction under self-gravity (see Chen & Kipping (2017)).
From the mass-radius relations detailed in Chen & Kipping
(2017), we find their ’Neptunian worlds’ deterministic re-
lation of Mp/M⊕ = (1.23Rp/R⊕)1.7 gives the most sensible
masses for all planets with Rp > 4R⊕.

6.2 De-biasing the Kepler population

As previously alluded to, Kepler only observes planetary sys-
tems that have their orbital planes aligned with our line of
sight. It is therefore sensible to suggest that there is a much
larger, underlying population of planetary systems within
which only some are observed to transit. We refer to this un-
derlying population of planetary systems as the model pop-
ulation. Conversely, we refer to the population of planetary
systems actually observed by Kepler as the Kepler popula-
tion. We assume that Kepler systems are representative of

planetary systems in the model population once geometrical
biases have been taken into account.

To construct an underlying model population, our pri-
mary goal is for this to predict the correct number and
planet parameter distribution seen in the Kepler population
for systems with two transiting planets (Figure 8 right). To
achieve this we first assume that all stars either have two
or zero planets. Any system which hosts two planets is as-
sumed to be identical to one of the 341 double transiting
systems observed by Kepler. We assume the abundance of a
specific Kepler-like system in the model population is equal
to the inverse of the mean of the double transit probabil-
ity calculated by the method outlined in §2. Systems with
inherently low mean double transit probabilities, are there-
fore probabilistically assumed to be more numerous in the
model population. By definition therefore, each unique sys-
tem in the model population would be expected to be ob-
served with both planets transiting exactly once and so the
model population predicts the correct distribution shown in
the right panel of Figure 8. We note that a model popula-
tion generated in this way is similar to the method described
in Johansen et al. (2012), albeit with their work predicting
the correct number and planet parameter distribution seen
in the Kepler population for systems with three transiting
planets.

The sum of the inversed mean double transit probabil-
ities of all the 341 double transiting systems gives the total
number of planetary systems in the model population. If we
assume that all of the two planet systems are coplanar, we
find the model population includes 16517 systems (the re-
maining 148449 systems observed by Kepler are assumed to
have no planets).

Each system in the model population can be observed
to have a single transiting planet, depending on the view-
ing angle. The sum of the mean single transit probabili-
ties for each of the 16517 systems in the coplanar model
population gives the total number of single transiting plan-
ets, Nsing, that would be expected to be observed. Here the
mean single transit probability for a given system is equal to
R?/a1 − R?/a2, where a1, a2 are the semi-major axes of each
planet when a2 > a1 and R? is the radius of the host star.
We find Nsing = 589, which clearly underestimates the 1951
single transiting systems in the observed Kepler population,
by a factor of ∼ 3. This is the Kepler dichotomy discussed
in §1. We show the smoothed distribution of the semi-major
axes and planet radii for these 589 predicted single transit-
ing planets in the top left panel of Figure 9, which when
compared with the left panel of Figure 8 clearly shows an
under-prediction of the single transiting planets observed by
Kepler.

6.3 Inherently inclined multi-planet systems

From transit duration variation (TDV) studies, the mutual
inclinations of planets in multi-transiting systems are small
at . 2− 3◦ (Fang & Margot (2012); Fabrycky et al. (2014)).
We note that this mutual inclination also best fits the dis-
tribution of impact parameters in the Kepler population.
Perhaps then, if two planets are assumed to be inherently
mutually inclined by a small amount, this may account for
the abundance of single transiting planets in the Kepler pop-
ulation. Consider a fixed mutual inclination ∆i12 between the
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Figure 9. The distribution of the radii and semi-major axis of single transiting planets observed from the model population with: (top)

no third planet. (middle) A third planet with m3 = 1MJ, a3 = 1.9au and ∆i = 10◦. The total number of single transiting planets predicted
by the model population is equal to that observed by Kepler. The colour scale for this panel is saturated for ease of comparison. (bottom)

A third planet with m3 = 24M⊕, a3 = 1.07au and ∆i = 10◦. We find the 1564 single transiting planets predicted here are a best fit
to those observed by Kepler (left panel of Figure 8). The contours show the distribution of single transiting planets from the Kepler
population. Pixel sizes are log(a) = 0.15 by log(Rp) = 0.1.

two planets in each of the 341 double transiting systems. The
mean single transit probability for each planet from a given
system, Psing,1 and Psing,2 respectively where Psing,1 > Psing,2,
is now given by

Psing,1 =
R?
a1
− P

Psing,2 =
R?
a2
− P,

(25)

where P is the mean double transit probability and Psing,1 +
Psing,2 is the total mean single transit probability for this
system. As ∆i12 increases, the mean double transit proba-
bility decreases (Figure 3). Therefore for a fixed population
of double transiting systems considered here, the expected
abundance of single transiting systems increases. Figure 10
shows how Nsing increases with ∆i12 for when the number of
double transiting systems is kept constant at 341 systems.
If ∆i12 = 4.4◦, we find Nsing = 1951, i.e. the number of single
transiting planets expected to be observed from the model
population is equal to the number in the observed Kepler
population. This suggests that mutual inclinations in Kepler

systems observed with two planets must be less than 4.4◦,
or the number of single planet systems observed by Kepler
would be too large relative to the number of doubles.

We show the distribution of the semi-major axes and
radii of the expected single transiting planets for when ∆i =
4.4◦ in the top right panel of Figure 9. Comparing with the
left panel of Figure 8, there is an over abundance of predicted
single transiting planets with radii of ∼ 2.5R⊕ and semi-
major axes of ∼0.15au. This is due to the model population
compensating for not being able to reproduce all types of
single transiting planets in the Kepler population (e.g. Hot
Jupiters discussed in §6.1). Herein therefore when discussing
how well a model population predicts the Kepler population
of single transiting planets we refer to how well the types of
planets from each population compare, rather than the total
number. That is, we look to find which value of ∆i12 causes
the associated version of the top right panel of Figure 9 to
be most like the left panel of Figure 8.

We judge the success of this comparison using a modi-
fied χ2 minimisation test, in which we simply sum the square
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Figure 10. (top) The expected number of single transiting plan-

ets observed from a model population generated from Kepler sys-

tems with two planets that are mutually inclined by ∆i12. The
number of double transiting systems predicted by the model pop-

ulation is constant with 341 systems. (bottom) The associated

modified χ2 comparing types of single transiting planets predicted
by the model population with the Kepler population. The mini-

mum modified χ2 value corresponds to ∆i12 = 3.6◦.

of the difference between the number of singles with a given
radius and semi-major axis expected from the model popu-
lation, with that of the observed Kepler population. Varying
∆i12 we therefore look to identify a minimum in the modi-
fied χ2 space without caring for the modified χ2 value itself.
We show this in Figure 10, with the modified χ2 minimum
occurring for ∆i12 = 3.6◦. The distribution of the single tran-
siting planets expected from the model population for this
mutual inclination is shown in the bottom left panel of Fig-
ure 9. Comparing with the left panel of Figure 8, these single
transiting planets share a stronger agreement with those in
the Kepler population, compared with when the outer planet
predicted Nsing = 1951 (e.g. top right panel of Figure 9). We
note that the total number of single transiting planets ex-
pected from the model population for ∆i12 = 3.6◦ is 1504.

We assume therefore that the remaining 1951-1504 = 447
single transiting transiting planets in the Kepler population
not fit by this model population are inherently single planet
systems.

Despite the model population for ∆i12 = 3.6◦ giving the
lowest modified χ2 value, this mutual inclination is perhaps
larger than that suggested by TDV studies. We note however
that mutual inclination estimates from TDV studies con-
sider a range of planet multiplicities. For example Fang &
Margot (2012) consider a model population of planetary sys-
tems with 1-7+ planets and predict that ∼50% of observed
planetary systems should contain a single planet, with the
remaining systems containing multiple planets with mutual
inclinations of . 3◦. In order to properly predict the inherent
mutual inclination in the multi-planet systems considered in
this work therefore, it would be necessary to simultaneously
model the TDV data directly. We consider such an analysis
as part of future work. Instead in §6.4 we consider the possi-
bility that Kepler planets form coplanar, but end up mutu-
ally inclined due to perturbations from an outer planetary
companion on an inclined orbit. This may provide another
way to predict the correct abundance of single transiting
systems observed by Kepler, and also result in a low mutual
inclination for those systems with two transiting planets.

6.4 Including an inclined planetary companion

We now consider the effects of a hypothetical outer planet
in each of the systems in the model population. We first
amend the assumption from §6.2 and assume that all stars
either host three or zero planets. Any system which hosts
three planets is assumed to be identical to one of the 341
double transiting systems from the Kepler population plus
an additional outer planet. The outer planet is assumed to
have the same mass and semi-major axis in all systems and
starts on an inclination to the inner planets when these are
coplanar, causing the mutual inclination between the inner
planets to evolve according to eq. (15). We assume that the

outer planet satisfies the Hill stability criterion of ∆ = 2
√

3
(Chambers (1999)) with the outer of the inner two planets
for all 341 considered systems, where ∆ = (a3 − a2)/RH and

RH =

(
m2 + m3

3M?

)1/3 ( a2 + a3
2

)
,

where M? is the stellar mass. If this criterion is not satisfied,
we move the outer planet for this specific system until it
is. For example, when the outer planet is assumed to have
a semi-major axis and mass of 1au and 1M⊕ respectively,
we find 6 of the 341 systems do not satisfy this stability
criterion and the outer planet needs to be moved to a mean
semi-major axis of 1.2au. When the outer planet has a semi-
major axis and mass of 1au and 10MJ respectively we find 22
of the 341 systems do not satisfy the stability criterion and
the outer planet needs to be moved to a mean semi-major
axis of 1.4au.

Each one of the 341 systems is again replicated enough
times in the model population to be expected to be observed
exactly once. That is, the inverse of the mean double transit
probability of the inner two planets, gives the abundance
of each of the 341 systems in the model population. The
associated mean single transit probabilities for each of the
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inner two planets is of the same form as eq. (25). The sum
of the mean single transit probabilities for every system in
the model population therefore again gives the abundance
of a given single transiting planet that would be expected
to be observed from the model population that also fits the
number of double transiting systems.

Similarly to the modelling approach in §6.3, we look to
identify which mass (m3), semi-major axis (a3) and initial
inclination (∆i) of the outer planet causes the types of single
transiting systems expected from the associated model pop-
ulation to be most like those in the observed Kepler popula-
tion. For a given combination of a3, m3 and ∆i we therefore
calculate a modified χ2 value described in §6.3. We show
these modified χ2 values in Figure 11 for an outer planet
with ∆i = 10◦ (top panel), m3 = 1MJ (middle panel) and a3
= 2au (bottom panel). Inclinations of ∆i � 20◦ where eq.
(15) is expected to break down are included for complete-
ness.

From the top panel in Figure 11, it is clear that there is
a ’valley’ of semi-major axes and masses of the outer planet
which causes a significantly lower modified χ2 value. It can
be assumed therefore that such an additional planet pre-
dicts single transiting systems whose radii and semi-major
axes better fit those in the Kepler population. However there
is also a distinct minimum in the modified χ2 space when
the outer planet has a semi-major axis of ∼1au for a mass of
∼30M⊕. Similarly in the other panels of Figure 11 there ap-
pear to be distinct minima. For the middle panel this occurs
for an outer planet (of m3 = 1MJ) with a semi-major axis of
1.38au, initially inclined to the inner planets by ∆i = 5.7◦. Fi-
nally for the bottom panel, this minimum occurs for a mass
of ∼6MJ and inclination of 6◦ (where a3 = 2au). Generally,
we find the distribution of single transiting planets expected
from the model population is more representative of those
in the Kepler population for 3 . ∆i . 10◦.

The bottom right panel of Figure 9 gives the distribu-
tion of single transiting planets expected from the model
population when the outer planet exists in a minimum of
the modified χ2 space with a3 = 1.07au, m3 = 24M⊕ and
∆i=10◦ (white circle in the top panel of Figure 11). We note
that the total number of single transiting planets expected
from this model population is 1564. The outer planet pa-
rameters which predict Nsing = 1564 are shown by the white
lines in Figure 11. This line highlights that while many outer
planet parameters can predict Nsing = 1564, some predict sin-
gle transiting planets which are more representative of those
in the Kepler population. We note that Nsing predicted by
the same range of outer planet parameters from Figure 11
is shown in Appendix C.

7 DISCUSSION

7.1 Combining inherently mutually inclined and
outer planet populations

In reality it is likely that the total number of single planet
transiting systems observed by Kepler (Nsing,Kep = 1951) is
contributed to by different populations of planetary systems.
These may include a number of inherently single planet sys-
tems (Nsing,inh) in addition to a number of single transiting
planets observed from a population of two planet systems

Figure 11. Modified χ2 value comparing types of single transit-
ing planets predicted by the model with Kepler population. For

the top panel ∆i = 10◦, for the middle panel m3 = 1MJ and for

the bottom panel a3 = 2au. Laplace-Lagrange theory is expected
to break down for ∆i � 20◦. The red dashed line refers to a rough

RV detection threshold. The white line shows where the model

population predicts Nsing = 1564. The white triangle and circle
gives the third planet parameters used to produce the middle

and bottom panels of Figure 9 respectively.

MNRAS 000, 1–24 (2017)



Transit Probabilities in Evolving Secular Systems 17

which have a fixed mutual inclination of ∆i12 (Nsing,∆i12 ).
They may also include a number of single transiting planets
which are observed from a population of initially coplanar
two planet systems interacting with an inclined planetary
companion (Nsing,planet). Hence in general, it can be consid-
ered that

Nsing,Kep = Nsing,inh + Nsing,∆i12 + Nsing,planet. (26)

Here we make the assumption that the total number of
double transiting systems observed by Kepler (Ndoub,Kep =
341) is made up of a fraction f that are two planet systems
with an inherent mutual inclination and a fraction (1- f ) that
are two planet systems with an inclined outer companion.
We can thus rewrite eq. (26) as

Nsing,Kep = Nsing,inh + f (Nsing,Ndoub=341)∆i12

+(1 − f )(Nsing,Ndoub=341)planet,
(27)

where (Nsing,Ndoub=341)∆i12 is the number of singles that
would have been produced from the population of two planet
systems with a fixed mutual inclination of ∆i12, had it been
numerous enough to reproduce the 341 double transiting Ke-
pler systems (which is shown in Figure 10 as a function of
∆i12). Conversely (Nsing,Ndoub=341)planet is the number of sin-
gles that would have been produced from the population of
two planet systems which are perturbed by an outer com-
panion, had it been numerous enough to reproduce the 341
double transiting systems. We estimate the number of inher-
ently single planet systems to be Nsing,inh = 447 from §6.3.
We note that Nsing,inh will change for different values of ∆i12,
however for simplicity we keep it constant at 447.

For the assumed Nsing,inh and an assumed fixed mu-
tual inclination for the fraction of the double transiting sys-
tems that are inherently inclined ( f ), eq. (27) means that
the number of single transiting systems observed by Kepler
can be reproduced by specific combination with the frac-
tion of double transiting systems that have an outer planet
(1 − f ) and the properties of these planetary systems which
determine the ratio of single to double transiting systems
from this population (i.e. (Nsing,Ndoub=341)planet). This com-
bination is plotted in Figure 12, which can be read along-
side Figure C1 to determine the outer planet parameters re-
quired to reproduce the required (Nsing,Ndoub=341)planet. For
example, for f = 0.2 and ∆i12 = 2◦, (Nsing,Ndoub=341)planet =
1676 from Figure 12, which from Figure C1 would be repro-
duced by an outer planet with a3 = 2au, m3 = 132M⊕ and
∆i = 10◦. For f = 0.5, (Nsing,Ndoub=341)planet is increased to
2192 requiring the mass of this outer planet to be increased
to m3 = 955M⊕ (for a3 = 2au and ∆i = 10◦). The outer
planet parameters required to produce (Nsing,Ndoub=341)planet
are therefore extremely sensitive to the value of f . How-
ever, increasing the value of ∆i12 for a given value of f in-
creases the value of (Nsing,Ndoub=341)∆i12 and hence decreases
(Nsing,Ndoub=341)planet as seen in Figure 12, requiring an outer
planet which is a weaker perturber of the inner planets.

It should be noted that f and 1− f are not equivalent to
the underlying fraction of stars that host a two planet system
with a fixed mutual inclination, or a two planet system with
an outer companion respectively. However if f is known,
such fractions for the underlying population of stars can be
estimated through occurrence rate calculations. We discuss
such calculations of occurrence rates in §7.3, however it is

Figure 12. The number of single transiting planets needed to be

predicted by a population of two planet systems with an outer

planetary companion, assuming that (1 − f ) of observed Kepler
systems host such systems. The remaining fraction of observed

Kepler systems are assumed to be two planet systems inherently
mutually inclined by ∆i12.

first necessary to estimate a value for f , which we discuss
below.

7.2 Comparing inherently mutually inclined and
outer planet populations

From §6.3 a sole population of two planet systems which are
inherently mutually inclined by ∆i = 3.6◦ (i.e. when f = 1)
can reproduce a population of single and double transiting
systems representative of those observed by Kepler (Figure
9). However from §6.4 a sole population of two planet sys-
tems with an outer planet (i.e. f = 0) can also reproduce a
population of single and double transiting systems represen-
tative of those observed by Kepler (Figure 11). Here we look
to differentiate between these two models by considering the
predicted distribution of mutual inclinations that would be
observed in the two planet populations for each model. We
note that combining these two models in a way described in
§7.1 (i.e. when 0 < f < 1) would then give some intermediate
distribution of mutual inclinations between the overall two
planet population.

For the model in which the two planets have an in-
herent mutual inclination of ∆i = 3.6◦, that distribution is
narrowly peaked at 3.6◦ (see Figure 13). In contrast, for
the model in which two planets are perturbed by an in-
clined outer planet, the distribution of mutual inclinations
is biased toward coplanar systems. This is because, while
the outer planet induces a significant mutual inclination be-
tween the inner planets, as required to reproduce the cor-
rect ratio of single to double transiting systems, the inclina-
tion is not always large (see Figure 5) and the probability
of witnessing a double transit system is much higher when
their mutual inclination is low. Consider an outer compan-
ion with m3 = 24M⊕, a3 = 1.07au and ∆i = 10◦, which was

MNRAS 000, 1–24 (2017)



18 M. J. Read et al.

Figure 13. Predicted distribution of mutual inclinations between

the two planets in the observed Kepler double transit population
for different model populations that both produce the correct

number of double and single transiting systems. The grey line

refers to the model where the two planet are inherently inclined
by ∆i12=4.4◦. The black line refers to the model where two planets

are secularly perturbed by a outer companion with m3 = 1MJ,
∆i = 10◦ and a3=1.9au.

in a minimum of the modified χ2 space (white circle, Figure
11 top). Weighting the secularly evolving mutual inclina-
tions between the inner two planets in the 341 considered
systems by the associated double transit probability gives
the predicted distribution of mutual inclinations which are
most likely to be observed. This distribution is shown by
the black line in Figure 13. It is clear that the most likely
observed mutual inclination is when the inner two planets
are coplanar. Moreover the number of systems expected to
be observed with mutual inclinations beyond 0.5◦ drops to
negligible values.

From transit duration variation studies, the distribution
of mutual inclinations between planets in multi-planet Ke-
pler systems is peaked at ∼ 2◦ (Fang & Margot (2012); Fab-
rycky et al. (2014)), noting however that these works con-
sider different planet populations to those considered here
as discussed in §6.3. Combining the two above models to
produce a similar distribution in mutual inclinations may
therefore allow for f to be determined. We look to combine
the two models in such a way to predict a value of f , as well
as modelling the TDVs of the planetary systems considered
in this work directly to predict the distribution of inherent
mutual inclinations, as part of future work. For example if a
fraction of two planet systems observed by Kepler are con-
sidered to have a fixed mutual inclination of ∆i12 = 4◦, then
in order to reproduce a distribution of mutual inclinations
that peaks at ∼2◦ from modelling of TDVs, it might be ex-
pected that f ∼ 0.5.

An additional method to estimate f might be to con-
sider whether hypothetical outer planets considered in this
work would have been detectable by other means. It is ex-
pected that RV studies would be most sensitive to such outer

planetary companions. On Figure 11 we plot a rough con-
straint from RV studies, shown by the red dashed lines, as-
suming a detection threshold of ∼2m/s. Outside of 5au we
assume RV studies are not sensitive to planets due to long
periods. Planets above or to the left of these lines would
therefore be detectable with this level of RV precision. This
detection threshold suggests that a wide orbit planet located
in the minima of the modified χ2 values in Figure 11 (white
circle) should be just detectable by RV studies. This would
assume however that all Kepler systems with two planets
host this outer companion i.e. f = 0. From Figure 12 and
highlighted in §7.1, if f > 0 a planet with a larger mass,
shorter period or larger inclination is required to reproduce
the total number of single transiting systems observed by
Kepler. Such outer planets should be readily detectable by
RV surveys. For example, for the values of f = 0.2 and
f = 0.5 for ∆i12 = 2◦ considered in §7.1, both of the outer
planets in these cases would be expected to be detectable by
RV surveys. Due to the inherent faintness of Kepler stars,
few have been extensively studied for wide orbit planets. We
suggest therefore that detailed follow-up RV studies of Ke-
pler systems would allow for f to be constrained. Generally
for example, a low yield of outer planets in RV studies would
suggest that f is low and vice versa.

7.3 Occurrence Rates

Similar to that discussed specifically for Kepler systems in
§7.1, consider that the underlying population of planetary
systems contains three possible types of planetary systems.
These include inherently single planet systems, two planet
systems which have a fixed mutual inclination of ∆i12 and
two planet systems which are being perturbed by an inclined
outer planet. In §7.1 it was shown that combining these sys-
tems with a free parameter f , which describes the fraction
of the observed double transiting population that are two
planet systems with a fixed mutual inclination, recovers the
total number of single and double transiting systems ob-
served by Kepler.

However this value of f is not the same as the fraction
of the underlying population of stars that have two planets
that are inherently mutually inclined. Here we define the oc-
currence rate of a given population to be the fraction of stars
which would be expected to host such systems. Occurrence
rates in this work can be estimated by taking the ratio of
the number of systems in a given model population (Nmod)
to the total number of stars observed by Kepler (NKep). The
individual occurrence rates for the inherently single planet
systems is therefore given by (Nmod/NKep)inh, for the two
planet systems with the fixed mutual inclination of ∆i12 by
(Nmod/NKep)∆i12 and for the two planet systems being per-
turbed by an inclined outer planet by (Nmod/NKep)planet. For
example, for the population of two planet systems which
were inherently mutually inclined by 3.6◦ (for when f = 1),
i.e. those which predicted a population of single transiting
planets representative of those observed by Kepler (§6.3),
the number of systems in the model population was equal
to 43807. From §6.1 the total number of Kepler stars was
164966. Therefore the occurrence rate for this type of sys-
tem, (Nmod/NKep)∆i12 = 27%. Conversely, considering the
population of two planet systems which were perturbed by
an outer companion with m3 = 24M⊕, a3 = 1.07au and
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∆i = 10◦ (white circle Figure 11 top) for when f = 0, pre-
dicted 42733 systems in the associated model population.
Therefore the associated occurrence rate of this type of sys-
tem (Nmod/NKep)planet = 26%.

The calculation of the occurrence rate for the popu-
lation of inherently single planet systems is slightly differ-
ent to that described above. From §6.3, assume that there
are 447 inherently single planet systems (noting that this is
subject to the value of ∆i12). The distribution of the semi-
major axes of these 447 planets is equal to the difference
between the distributions of semi-major axes for the single
transiting systems observed by Kepler and those predicted
by the population of two planet systems with a fixed mu-
tual inclination of ∆i12 = 3.6◦, i.e. the difference between
the left panel of Figure 8 and the bottom left panel of Fig-
ure 9. The number of inherently single planet systems in a
model population is then the sum of the inverse of the sin-
gle transit probabilities (R?/a) of all these 447 planets. We
find this model population contains 15852 systems, predict-
ing an occurrence rate of inherently single planet systems of
9.6%. This is large compared with the occurrence rate of Hot
Jupiters (∼ 1 − 2% e.g. Marcy et al. (2005); Cumming et al.
(2008); Mayor et al. (2011); Wright et al. (2012); Santerne
et al. (2016)). We therefore expect that our population of
inherently single planet systems is dominated by a different
population, such as those described in §6.1 which are poorly
constrained.

In a similar way to that described for eq. (27), the total
occurrence rate of assumed planetary systems in the under-
lying population of planetary systems can be estimated to
be(

Nmod
NKep

)
tot
=

(
Nmod
NKep

)
inh
+ f

(
Nmod
NKep

)
∆i12

+ (1 − f )
(

Nmod
NKep

)
planet

.

(28)

Consider the example combination of systems from §7.2 for
when f = 0.2, ∆i12 = 2◦ and the outer planet parameters are
a3 = 2au, m3 = 132M⊕ and ∆i = 10◦. Here f (Nmod/NKep)∆i12
∼ 3% and (1 − f )(Nmod/NKep)planet ∼21%. We note that
f (Nmod/NKep)∆i12 /(1 − f )(Nmod/NKep)planet = 3/21 = 14%.
This highlights that the occurrence rate of stars which have
two planet systems with an inherent mutual inclination is
similar to, but not the same as the parameter f .

Combining with the occurrence rate of inherently single
planet systems estimated above, the total occurrence rate
of planetary systems becomes 34%. This is similar to oc-
currence rates of ∼ 25% − 30% for Kepler like planets de-
rived from injection and recovery analysis of planet candi-
dates from the Kepler pipeline (Petigura et al. (2013); Chris-
tiansen et al. (2015)).

Estimates of occurrence rates for planets similar to the
outer planets considered in this work exist from RV studies.
Cumming et al. (2008) suggest an occurrence rate of 7.0 ±
1.4% for planets with masses and semi-major axes of mp =
1-10MJ and ∼1-5au respectively. Extrapolating this occur-
rence rate also predicts that 17-20% of stars have gas giants
within 20au. Similarly Mayor et al. (2011) suggest an oc-
currence rate of 13.9 ± 1.7% for planets with masses and
periods of mp > 50M⊕ and P < 10yrs respectively. More re-
cently Bryan et al. (2016) suggest that for systems with 1
or 2 RV planets, the occurrence rate of an additional com-

panion with a mass and semi-major axis of 1-20MJ and 5-
20au respectively is as high as 52 ± 5%. The above example
occurrence rate for the systems with an outer planet, i.e.
(1 − f )(Nmod/NKep)planet ∼21%, is then therefore not con-
tradicted by these studies. However, this example assumed
an estimated value of f . In addition to the methods de-
scribed in §7.2, observationally estimated occurrence rates
for outer planets may also be able to constrain the value of
f . For example if it is assumed that the occurrence rate
of the types of outer planets considered in this work is
13.9% (Mayor et al. (2011)), then it can be estimated that
(1 − f )(Nmod/NKep)planet ∼ 13.9%. As (Nmod/NKep)planet ≯ 1
(i.e. it is unphysical that there are more stars in the model
population than the number actually observed by Kepler),
this results in an upper limit of f ≤ 0.86. We suggest there-
fore that combining this method of placing constraints on
f with those described in §7.2 might provide a strong con-
straint on the percentage of planetary systems which may
share a fixed mutual inclination compared with systems that
may host an outer inclined planet.

7.4 Comparing with similar works

Whether an outer planet can reduce the multiplicity of ex-
pected transiting planets in an inner planetary system in
the context of N-body simulations has recently been investi-
gated by Hansen (2017). A notable example they include is
the effect of a companion with a mass of 1MJ at 1au, which
is inclined to an inner population of planetary systems with
a variety of multiplicities by 10◦. They find the ratio of the
total number of double to single transiting systems that Ke-
pler would be expected to observe is 0.184 (i.e. ∼5 times more
expected single than double transiting systems). We find an
identical outer planetary companion in our work gives this
ratio to be 0.14. We suggest this difference is caused by the
population of inner planetary systems used. Hansen (2017)
incorporate 50 model inner planetary systems with a range
of multiplicities (the vast majority contained 3-6 planets at
the end of their simulations), rather than the two planet
Kepler systems considered in this work. Higher multiplici-
ties increases the number of competing secular modes in the
system, which can stabilise inner planets against the secular
perturbations of an outer companion (e.g. Read & Wyatt
(2016)). Such an example was shown in this work in §5 for
application to Kepler-48. Perhaps then, mutual inclinations
are more easily induced between inner planets in this work,
increasing the predicted number of single transiting planets
that Kepler would be expected to observe, relative to a fixed
population of planetary systems.

Moreover compared with N-body simulations, our work
does not allow for dynamical instability. If inclinations are
large then they couple with eccentricity (Murray & Dermott
(1999)), potentially causing orbital crossings between neigh-
bouring planets leading to dynamical instabilities on short,
non-secular timescales. Indeed Hansen (2017) find for the
above mentioned outer planetary companion that roughly
half of the 50 systems they consider lose at least one planet.
Moreover Pu & Wu (2015) suggest that the abundance of
single and double transiting systems might be the remains of
higher order planetary systems that were once tightly packed
and have since undergone dynamical instability. A detailed
discussion on how dynamical stability would be expected to
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affect our results is difficult. Our choice that all planets must
be initially Hill stable is by no means a robust constraint on
the long term stability of all the planetary systems we con-
sider during the secular interaction.

The effects of dynamical instability in tightly packed
planet systems interacting with a wide orbit companion
planet was also shown by Mustill et al. (2015). They find
that an outer giant planet undergoing Kozai-Lidov interac-
tions with a stellar binary (Kozai (1962); Lidov (1962)) can
have an eccentricity which takes its orbit within the inner
planets, leading to a significant reduction in planet multi-
plicity. Moreover more recent work in Mustill et al. (2016)
suggests that these same interactions can cause ∼50% of Ke-
pler like systems to lose a planet, either through collisions
or ejections. If inclination is not completely decoupled with
eccentricity then, these works suggest that dynamical insta-
bility plays a significant role in sculpting an inner planetary
system.

7.5 Metallicity Distribution

The fraction of stars with gas giants increases with higher
metal content (e.g. Gonzalez (1996); Thorngren et al.
(2016)). However it is unclear if this relation extends to
smaller planets with Rp . 4R⊕ (Mayor et al. (2011); Zhu
et al. (2016)). If single transiting planets are in systems
which contain an outer giant companion similar to that con-
sidered in this work then the transiting planet should follow
a similar metallicity relation as the giant planet. If there is an
inherent population of single planet systems with Rp . 4R⊕,
in addition to a population of inherently mutually inclined
double transiting systems, then these systems will follow
a different metallicity relation. Therefore the population of
single and double transiting systems observed by Kepler may
contain a mixture of metallicity relations. If a distinction
can be made between these different relations then this may
place constraints on the presence of additional planets in
Kepler systems with a single transiting planet.

7.6 Assumptions of this work

Throughout this work we have considered mutual inclina-
tions evolve between two planets due to secular interactions
with an outer planet. As stated above, increasing the multi-
plicity of planetary systems complicates the evolution of mu-
tual inclinations. For application to the Kepler dichotomy,
including higher multiplicity systems may cause proportion-
ally fewer to be observed as single transiting systems. We
look to investigate this as part of future work. Moreover
higher multiplicity systems also allow for investigation into
whether the presence of an outer planetary companion can
explain the number of higher order systems observed by Ke-
pler. This is of particular interest as Johansen et al. (2012)
find that generating a model population which predicts the
number of systems observed by Kepler with three transit-
ing planets (with small inherent mutual inclinations and no
outer companion) cannot simultaneously predict the number
of systems with a single and two transiting planets observed
by Kepler.

We have also assumed that the inner transiting planets
interacting with an outer companion were initially coplanar.

However these transiting planets would most likely also have
a small inherent mutual inclination (e.g. Fang & Margot
(2012); Fabrycky et al. (2014)) which in turn may affect the
mean double transit probability.

8 SUMMARY AND CONCLUSIONS

In summary, during the first part of this work we developed
a semi-analytical method for the calculation of transit prob-
abilities by considering the area a transiting planet subtends
on a celestial sphere (§2). Applying this method to a gen-
eral two planet system, we showed how the probability that
both planets are observed to transit changes as they become
mutually inclined.

In §3 we discussed how the mutual inclination between
two initially coplanar planets evolves due to secular interac-
tions with an external mutually inclined planetary compan-
ion. We derived the full solution describing this evolution
assuming that the mutual inclination remains small, before
simplifying it under the assumption that the external planet
was on a wide orbit. We found that the maximum mutual
inclination between the inner two planets is approximately
equal to twice the initial mutual inclination with the ex-
ternal planet. Below this the maximum mutual inclination
between the inner two planets scales according to the mass,
semi-major axis and inclination of the external planet by
∝ ∆im3/a3

3.
How the secular interaction causes the double transit

probability of the inner two planets to evolve was shown
in §4. Assuming that this double transit probability is sig-
nificantly reduced when the maximum mutual inclination
exceeds ≈ (R?/a1)+ (R?/a2) we derived an expression for the
mean of the double transit probability considering a given
external planetary companion. This expression was applied
to Kepler-56, Kepler-68, and Kepler-48 to place constraints
on the inclination of the outer RV detected planets in these
systems in §5. We found that the inner two transiting plan-
ets in Kepler-56 and Kepler-68 are not significantly secularly
perturbed by the outer planets, regardless of their inclina-
tion. For HD 106315 we find that an outer planet inferred
from recent RV analysis can cause a significant perturbation
to the mutual inclination of two internal transiting planets.
Moreover we find that if the outer planet is present within
∼1au, its inclination must be no more than 2.4◦, otherwise
the probability of observing both the inner planets to transit
is significantly reduced. We also found that the RV detected
planet in Kepler-48 needs to be inclined with respect to the
inner planets by . 3.7◦, otherwise the probability that all
the inner planets are observed to transit is significantly re-
duced. We conclude therefore that using the expression for
the mean transit probability between inner planets from eq.
(20) and (17) can be used to place significant constraints on
the inclinations of RV detected planets, whose host systems
also contain transiting planets.

We further applied our method of calculating transit
probabilities to the Kepler population in §6. We found that
relative to a fixed population of transiting systems with two
planets on initially coplanar orbits, the expected number of
single transiting systems can be significantly increased both
by inherently inclining the two planets and by introducing
an outer planetary companion. We found that an inherent
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mutual inclination of ∆i12 = 3.6◦ predicts a population of
single transiting planets most representative of those in the
Kepler population. Moreover, we found that outer planets
initially inclined by ∼ 3 − 10◦ to the inner planets also pre-
dict a representative population of single transiting systems.
These outer planets should be detectable by RV studies.

However it is likely that planetary systems observed by
Kepler may include a combination of systems which include
inherently single planet systems, two planet systems which
have some fixed mutual inclination and two planet systems
interacting with an inclined outer planet. For two planet
systems which are perturbed by an outer planet, the distri-
bution of the mutual inclinations between the inner planets
of such systems is biased toward coplanar systems. This is
due to an increased probability of observing inner planets
when coplanar compared with when mutual inclinations are
larger. We suggest that combining populations of inherently
mutually inclined two planet systems with two planet sys-
tems which are interacting with an outer planet may be able
to reproduce the observed distribution of mutual inclina-
tions between Kepler planets. In doing so, this may provide
constraints on the presence of outer planets in the Kepler
population. We suggest also that detailed follow-up of RV
studies in Kepler systems will provide a more direct con-
straints on the presence of outer planets. There should also
be a dichotomy in the number of transiting systems observed
by the upcoming TESS mission (Ricker et al. (2014)), how-
ever for these systems astrometry and RV techniques will be
able to be used to verify the presence and influence of outer
planets.
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APPENDIX A: FURTHER DISCUSSION OF
TRANSIT EQUATIONS

A1 Central Transit Line

The centre of the transit region is defined by eq. (2)

− sin∆i sin θ sin φ + cos∆i cos θ = 0,

Assuming that φ = 0 → 2π and that a corresponding value
of θ for each value of φ can be in the range of 0 < θ < π, eq.
(2) can be rearranged to give

θ = arctan
(

1
tan∆i sin φ

)
for φ < π,

θ = π + arctan
(

1
tan∆i sin φ

)
for φ > π.

(A1)

A2 Upper Transit Boundary

The upper boundary of a transit region is given by eq. (4)

− sin∆i sin θ2 sin φ2 + cos∆i cos θ2 = −χ,
A value of θ2 for a given φ2 can be calculated through solving
a quadratic of the form(

A2 + B2
)

x2 + 2Aχx + χ2 − B2 = 0 (A2)

where

x = sin θ2, A = − sin∆i sin φ2, B = cos∆i.

Depending on the value of ∆i, the calculation of θ2 for a given
value of φ2 can be grouped into three different regimes, (1)
∆i is small enough that the upper boundary of the transit
region never crosses the fixed reference plane. (2) ∆i is large
enough that the upper boundary of the transit region does
cross the fixed reference plane. (3) For high values of ∆i the
upper transit boundary only has values of θ2 for 0 < φ2 < π.
This can be thought of as the transit region going over the
pole of the celestial sphere.

For regime (1), the value of θ2 for a given φ2 is equiv-
alent to that obtained from the positive root of eq. (A2),
mirrored about π/2. The transition to regime (2) occurs for
when the upper transit boundary first crosses the fixed ref-
erence plane. Here ∆i = arcsin(χ). As ∆i is increased beyond
this value the intersection between the upper transit bound-
ary and the fixed reference plane occurs at φ2 = φ0 and
φ2 = π − φ0, for which θ2 = π/2. From eq. (4) φ0 is given by
φ0 = arcsin(χ/sin∆i). Therefore θ2 < π/2 for φ0 < φ2 < π − φ0
and θ2 > π/2 otherwise. When φ0 < φ2 < π − φ0, θ2 is hence
obtained from the positive solution of eq. (A2) and by the
positive solution mirrored about π/2 otherwise.

Finally the transition to regime (3) occurs when ∆i =
arccos(χ). Similarly to regime (2) as ∆i is increased beyond
this value, the upper transit boundary crosses the fixed ref-
erence plane at φ2 = φ0 and φ2 = π − φ0 and hence θ2 is
only defined for when φ0 < φ2 < π − φ0. The solution from
eq. (A2) which gives the smaller value θ2 corresponds to
θ2 > π/2 values and needs to be mirrored about π/2, with
the solution giving the larger value of θ2 corresponding to
θ2 < π/2 values.

To summarize consider that for a given value of φ2,
eq. (A2) gives two solutions for θ2, denoted as θ∗12 and θ∗22
respectively. For ∆i < arcsin(χ),

θ2 =
π

2
+

( π
2
− θ∗12

)
for 0 < φ2 < 2π, (A3)

where θ∗12 > 0 and θ∗22 < 0.

For arcsin(χ) < ∆i < arccos(χ),

θ2 = θ
∗1
2 for φ0 < φ2 < π − φ0,

θ2 =
π

2
+

( π
2
− θ∗12

)
otherwise,

(A4)

where θ∗12 > 0, θ∗22 < 0 and φ0 = arcsin(χ/sin∆i).
For ∆i > arccos(χ),

θ2 = max
(
θ∗12 , θ

∗2
2

)
and for φ0 < φ2 < π − φ0

θ2 =
π

2
+

( π
2
−min

(
θ∗12 , θ

∗2
2

))
,

(A5)
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where θ∗12 > 0, θ∗22 > 0.

A3 Lower Transit Boundary

The lower boundary of the transit region is given by eq. (3)

− sin∆i sin θ1 sin φ1 + cos∆i cos θ1 = χ,

Depending on the value of ∆i, the calculation θ1 for a given
φ1 can be grouped into the same regimes as described for the
upper transit boundary. However now in regime (1), θ1 < π/2
for 0 < φ1 < 2π, in regime (2) the lower transit boundary
crosses the fixed reference plane at φ1 = π + φ0 and φ1 =
2π− φ0 and in regime (3) θ1 is only defined for π+ φ0 < φ1 <
2π−φ0. Assuming that θ∗11 and θ∗21 are the solutions for θ1 for
a given φ1 in the modified form of eq. (A2), then following
the same discussion as for the upper transit boundary it can
be shown that for ∆i < arcsin(χ),

θ1 = θ
∗1
1 for 0 < φ1 < 2π, (A6)

where θ∗11 > 0 and θ∗21 < 0.

For arcsin(χ) < ∆i < arccos(χ),

θ1 =
π

2
+

( π
2
− θ∗11

)
for φ0 + π < φ1 < 2π − φ0,

θ1 = θ
∗1
1 otherwise,

(A7)

where θ∗11 > 0, θ∗21 < 0 and φ0 = arcsin(χ/sin∆i).
For ∆i > arccos(χ),

θ1 = min
(
θ∗11 , θ

∗2
1

)
and for φ0 + π < φ1 < 2π − φ0

θ1 =
π

2
+

( π
2
−max

(
θ∗11 , θ

∗2
1

))
,

(A8)

where θ∗11 > 0, θ∗21 > 0.

APPENDIX B: SECULAR SOLUTION FOR
MUTUAL INCLINATION EVOLUTION

From eq. (11) the evolution of complex inclinations accord-
ing to Laplace-Lagrange theory is given by

yj (t) =
N∑
k=1

Ijkei( fk t+γk ), (B1)

where I jk are the eigenvectors of the matrix B from eq.
(9) scaled to initial boundary conditions, fi are the eigenfre-
quencies of B and γk are initial phase terms. If it is assumed
that all the planets and the star are point masses and that
the invariable plane is taken as a reference plane, it follows
that f3 = 0 and I j3 = 0. From the initial conditions |y1(0)|
= |y2(0)| = i1. Hence the complex inclinations of the inner
two planets respectively are given by

y1(t) = I11 exp (i ( f1t + π)) + I12 exp (i ( f2t)) , (B2)

y2(t) = I21 exp (i ( f1t + π)) + I22 exp (i ( f2t)) . (B3)

Also from the initial conditions −I11+I12 = i1 and −I21+I22 =
i1. The complex mutual inclination between the inner two
planets is equivalent to

y1(t) − y2(t) = (I12 − I22) [exp(i( f1t + π)) + exp(i f2t)] . (B4)

Solving eq. (11), we propose a set of variables to represent
the full solution of I12 and I22,

K1m =
B13B32

fm + B31 + B32
,

K2m =
B13B31

fm + B31 + B32
,

K3m = fm + B12 + B13,

K4m = fm + B31 + B32,

(B5)

where m = 1, 2,

R1(3−m) =
K3m − K2m
B12 + K1m

,

R2(3−m) = B31 + B32R1(3−m),
(B6)

ε = R11 +
R21
K42
(R12 − 1) + R22

K41
(1 − R11) − R12. (B7)

Hence the components of the eigenvector associated with the
f2 eigenfrequency are given by

I12 =
1
ε
[∆i(1 − R12)] ,

I22 =
R11
ε
[∆i(1 − R12)] .

(B8)

The non zero f1 and f2 eigenfrequencies of the matrix B
from eq. (9) can be obtained by solving a quadratic of the
form

f 2 + f (B12 + B12 + B21 + B23 + B31 + B32)+
[B12 (B23 + B31 + B32) + B13 (B21 + B23 + B32)
+ B21 (B31 + B32) + B23B31] = 0.

(B9)

We note that the solution given by eq. (B8) recovers exactly
what is predicted when solving eq. (11) by numerical meth-
ods. The full solution which describes how the mutual incli-
nation between the inner two planets according to Laplace
- Lagrange theory is therefore given by

y1 − y2 =
∆i(1 − R12)(1 − R11)

ε

[
ei( f1t+π) + ei f2t

]
, (B10)

with the variable K used in §3.2 being equivalent to (1 −
R12)(1 − R11)/ε .

APPENDIX C: REPRODUCING THE TOTAL
NUMBER OF SINGLE TRANSITING PLANETS
OBSERVED BY KEPLER

In §6 we considered Kepler systems with two transiting plan-
ets which are secularly interacting with an outer planet on
an inclined orbit. We found that the number of single tran-
siting systems Kepler would be expected to observe can be
dramatically increased as a result of this interaction. Figure
C1 shows the total number of single transiting objects Ke-
pler would be expected to observe from the method outlined
in §6.4, for when the outer planet has the same parameters
as the respective panels of Figure 11. Again for ∆i � 20◦,
Laplace-Lagrange theory is expected to break down and is
included for completeness. The white line gives where the
total number of single transiting planets Kepler would be ex-
pected to observe from the model population is equal to the
number in the Kepler population i.e. 1951. The red dashed
lines give an estimate for an RV detection threshold.
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Figure C1. The total number of single transiting planets Kepler

would be expected to observe for given third planet parameters.
The white line corresponds to the total number of single transiting

systems currently observed by Kepler (1951). The red lines give
an estimate for the detection threshold of RV surveys.
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