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ABSTRACT

There is evidence for the existence of massive planets at orbital radii of several hundred
AU from their parent stars where the timescale for planet formation by core accretion
is longer than the disc lifetime. These planets could have formed close to their star
and then migrated outwards. We consider how the transfer of angular momentum by
viscous disc interactions from a massive inner planet could cause significant outward
migration of a smaller outer planet. We find that it is in principle possible for planets
to migrate to large radii. We note, however, a number of effects which may render the
process somewhat problematic.
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1 INTRODUCTION

Most stars at an age of about 10° yr are surrounded by cir-
cumstellar discs which are optically thick at optical and in-
frared wavelengths (Strom et al. 1989, Kenyon & Hartmann
1995, Haisch, Lada & Lada 2001). At earlier times, since
these discs are part of the star formation process, it seems
likely that they contained a significant fraction of the stel-
lar mass (e.g. Lin & Pringle, 1976). At this age of around
10% yr, the discs are found to be as massive as a few per-
cent of a solar mass and have typical sizes of a few hun-
dred AU (Beckwith et al. 1990). It must be within these
discs that planets form. Most of the detections of extraso-
lar planets are based on Doppler techniques and a smaller
number of detections come from occultationsﬂ (Butler et
al. 2006). For obvious reasons these detection methods are
biased toward finding planets at relatively small distances
from their parent stars compared to the typical disc sizes,
and compared to the planets on the Solar System (e.g. Beer
et al., 2004). In addition the planets discovered are almost
all high mass, and therefore most likely, all gas-rich giants.
Current ideas on the formation of such planets, involving
the initial formation of a metal-rich core and subsequent
accretion of a gaseous envelope from the disc, suggest that
these planets formed at larger radii (around a few AU so
that core-formation can occur) and then migrated inwards to
their current positions (e.g., Lin, Bodenheimer, & Richard-
son 1996). However, in addition to these planets at small
radii, there is evidence, albeit somewhat indirect, for sev-
eral massive planets at very large radii, much greater than

1 See lhttp://exoplanet.eul for a recent catalogue of exoplanets.

the putative formation radius of around a few AU. For ex-
ample, one model for the formation of spiral structure seen
in the disc of HD141569 involves the presence of a planet
of mass 0.2 — 2M; orbiting at 235 — 250 AU and a Saturn-
mass planet at 150 AU (Wyatt 2005a). Gaseous discs ap-
pear to dissipate on a timescale of 5 — 10 Myr (Haisch, Lada
& Lada 2001) and clearly the gas giant planets must form
before this occurs. In the standard core accretion models
(Safronov 1969), the timescale for building a giant planet
core scales with the square of the distance from the central
star (Pollack et al. 1996). The formation time for Jupiter (at
5AU) is estimated to be 1 — 10 Myr . Hence, to form a 1 Mj
planet at 200 AU would take 1.6 — 16 Gyr, by which time
the gaseous disc has long since disappeared. It is therefore
thought highly unlikely that gas giant planets can form in
situ at large distances from the central star.

One obvious possible explanation for the presence of
such planets at large radii is that they form at a standard
radius and migrate outwards. The key issue is then what pro-
vides the outward torque. Inward migration seems a more
natural possibility, since the disc, which facilitates the mi-
gration, is part of the accretion process. For example, con-
sider a planet whose mass is small compared to the disc but
sufficiently large to open a gap in the disc. Such a planet
follows the radial mass flow of the disc in what is commonly
called Type II migration (Lin & Papaloizou 1986). Gener-
ally, disc material flows inward as an accretion disc carry-
ing the planet inward towards the central star. However, in
order for accretion to proceed, the disc must move angular
momentum outwards. Thus some material in the outer parts
of an accretion disc moves outwards in order to conserve the
angular momentum lost by most of the disc. The fraction of
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outward moving material decreases with time. A planet lo-
cated in such a disc region would similarly move outward, at
least for a limited time. Veras & Armitage (2004) considered
this possibility. They model a situation in which disc photoe-
vaporation at large radii causes a planet at (small) standard
radii to effectively experience outer edge effects which in
turn causes outward migration. For the models they consid-
ered, planets were able to migrate to about 20 AU and in a
few cases as far as 50 AU.

There are two main problems to be addressed in trying
to drive a planet to large distance. First it is necessary to
provide a large enough source of angular momentum. And
second, it is necessary to give the planet that angular mo-
mentum on a short enough timescale. In the models of Veras
& Armitage (2004) the angular momentum was provided by
the disc. Here we build on these ideas, but consider the pos-
sibility that the source of the angular momentum is an inner,
more massive, planet. As a simple example, suppose initially
we have two planets of masses M1 and M2 orbiting a star in
circular orbits at radii a1 and a2 respectively with az > a;.
Then if the inner planet could somehow be induced to give
all its angular momentum to the outer one, the outer one
would move out to a final radius

My 1/2 12\’
af = <ﬁ2a1/ —|—a2/ ) (1)

where we have assumed, as is reasonable if the angular mo-
mentum transfer is effected through tidal interactions with
a gaseous disc, that the outer planet remains in a circular
orbit. Suppose we have a planet of mass 5Mj that begins
at a1 = 5AU and a planet of mass 1 M; that begins at
a2 = 10 AU. If the inner planet manages to give up all its
angular momentum, and so ends up at the central star with
radius R < a1, then the outer planet can migrate to a dis-
tance af = 206 AU. This demonstrates that mutual interac-
tion within a two (or more) planet system can, in principle,
drive a planet out to the required distances of a few hundred
AU.

In this paper we investigate what is required in practice
for this to be achieved. It is clear that there are two main
requirements. First we need some efficient mechanism for
transferring angular momentum from the inner planet to
the outer one. Second, we need to effect the transfer on a
sufficiently short timescale before the means of transferring
the angular momentum, presumably tied to the disc, has
vanished.

The outline of the paper is as follows. In Section 2 we
consider the evolution of a region of a steady accretion disc
that lies exterior to a newly formed massive planet or com-
panion star. We show that the disc changes format from ac-
cretion to decretion and in doing so changes its surface den-
sity profile on a viscous timescale. In Section 3 we consider
the evolution of a steady accretion disc in which two planets
are permitted to form and consider the circumstances nec-
essary for the outer planet to be forced to migrate outwards
to large radius. By an age of 107 yr it appears that massive
circumstellar discs are no longer present. All that remains is
possibly a debris disc. Photoevaporation of the disc is con-
sidered a possible gas dispersion mechanism. In Section 4 we
investigate the effects of mass loss from the disc caused by
photoevaporation. In Section 5 we discuss the applicability

of our findings to some observed systems. We summarise our
conclusions in Section 6.

2 THE CHANGE FROM ACCRETION DISC
TO DECRETION DISC

An accretion disc occurs when the disc has a mass sink at
its inner edge (allowing accretion onto the central object)
while providing no torque at the inner edge. A decretion
disc occurs when the central object does not accrete, but
instead provides a central torque which prevents inflow. For
a decretion disc, the torque exerted by the central object
results in radial outflow. Decretion discs can arise when the
central torque is provided by a binary star or star-planet
system. We consider in this Section how an accretion disc
adjusts when conditions at the inner boundary change so
that accretion there no longer occurs. We consider the ide-
alised situation in which, for example, a massive planet, or
binary companion, forms suddenly (compared to a viscous
timescale) near the inner disc edge. Then the tidal influence
of the inner binary is assumed to prevent further accretion,
and to provide the disc with angular momentum through a
tidal torque. What we are interested in here is the resulting
change to the disc structure caused by such an event.

The equation that describes the evolution of a flat Ke-
plerian accretion disc with surface density 3(R,t) where R
is the radius from centre of the star and t is the time, is

02_13[

> = R 3E 3R”2i(y231/2)} (2)

OR

(Pringle 1981) where v(R, ) is the kinematic viscosity. In
general we shall model the effect of the planet or companion
star on the disc as an extra angular momentum source term.
The governing equation for such a disc is
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where A(R,t) is the rate of input of angular momentum per
unit mass (Lin & Papaloizou 1986, Armitage et al. 2002).
We analyse here the evolution of disc material that resides
outside the orbit of the companion.

In this Section, for the purposes of illustration, the com-
panion is assumed sufficiently massive that its angular mo-
mentum is much greater than that of the disc, so that the
orbital evolution of the central objects can be ignored. We
consider a high mass planet or companion star which orbits
at fixed radius and prevents mass from passing interior to
the disc inner edge. In this situation, the effect of this extra
torque term involving A is equivalent to imposing a zero ra-
dial velocity inner boundary condition at R = Rj, (Pringle
1991) where the radial velocity in the disc is given by

BENY
YRY2 0R
We initially take an accretion disc with constant accre-

tion rate but truncated at some outer radius R:;. Thus for
the initial surface density we take

Vi = RY2ux). (4)

S(R) = %o (%)B (5)

in the range Rin < R < R: where ¥y is a constant which



determines the initial mass of the disc and R; is the initial
outer edge of the disc. We take 8 = 3/2 (Weidenschilling
1977, Hayashi 1981) in most of our numerical simulations,
but also investigate the effect of varying (.

In order that v = const. in the initial accretion disc,
and to keep things simple at later times, we choose the kine-
matic viscosity of the disc to be

v=vo (%)ﬁ ©6)

with vo = 2.466 x 107 AU yr~" to give a reasonable time
scale for the evolution of the disc of a few Myr. In terms
of the a-prescription for the viscosity v = acsH where «
is dimensionless, ¢s is the sound speed and H is the scale
height of the disc, and for a typical value H/R = 0.05 (see
below), this implies

R )(ﬁ1/2) )

a=157x10"* (E

We solve equation ([B)) on a fixed, uniform mesh in the

variable = R'Y? by using a simple first order explicit
numerical method. We use 4000 grid points with a zero
radial velocity inner boundary condition at Rin = 5AU,

Vi (Rin,t) = 0 for all time ¢ and a zero torque outer bound-
ary at Rout = 1500 AU. Due to the inner boundary condi-
tion on the radial velocity, the gravitational torque term A
in equation (@) is ignored. The outer boundary condition
does not effect the disc evolution because it is well outside
the disc over the course of the evolution we consider.

In the simulations, we trace the radial movement of disc
particles by integrating the radial velocity because

2 = Via(t). ), ®)
where a(t) is the radial position of the particle. The impo-
sition of a non-absorbing boundary at an inner radius Rin
transforms the initial accretion disc into a decretion disc. To
show the outcome of imposing such a boundary condition,
we plot in Figure [I] the radial motions of particles in two
discs, one initially truncated at Ry = 20 AU (dashed line in
Figure [I)) and the other initially truncated at R, = 100 AU
(solid lines in Figure[I)). In both discs, the particles initially
follow the inward accretion, before reversing and being ex-
pelled to large radii. The smaller disc makes the initial ad-
justment more quickly and expels the particles more quickly
than the larger disc.

To understand the disc flow analytically, we consider
the behaviour of self-similar solutions to the disc flow that
are valid at large times based on Pringle (1991). We first
consider the case of an accretion disc. In a steady accretion
disc, the left-hand side of equation (2)) is zero. This condition
is satisfied for

3v
Ve =—on )
and the mass flux is given by
M = —37vY% (10)

which is independent of radius. The latter provides the radial
variation X(R) in the steady-state. Over time, an arbitrary
initial disc which evolves with absorbing (mass flow) inner
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boundary conditions will approach this steady-state accre-
tion disc. The self-similar solution valid at large times for
an accretion disc implies that

W 3rf—1 r
VR“RT( 2 _(2—5)T>’ ()

where 1o is given by equation (B) with Ry = 1AU, di-
mensionless radius 7 = R/Ro and dimensionless time 7 =
tvo/R3. Consequently, at fixed radius and for sufficiently
large ¢, the radial velocity in equation () approaches the
steady state value given in equation (@) which provides the
Type II migration velocity and the motion is always even-
tually inward.

In contrast, a steady decretion disc has Vg = 0 every-
where and

VY oc R7Y2 (12)

(Pringle 1991). The decretion disc simulations in Figure [II
start with a steady-state accretion disc density profile. Ini-
tially, the disc is unaware of the inner boundary where the
outward torque is exerted, and behaves as a standard ac-
cretion disc. Over time the mass builds up near the inner
boundary as a consequence of the blocked inflow. The out-
ward torque increases and its effects propagate outward.
Over time, more of the disc material flows radially outward
to become a decretion disc. The disc gains angular momen-
tum at the expense of the central system.

We discuss below whether/how a decretion disc ap-
proaches its steady-state density and velocity over time. We
also determine the particle drift velocity Vg for a decretion
disc and thereby obtain its Type II migration rate. It can
be shown from the self-similar solutions for a decretion disc
(using the equations of Pringle (1991) for a viscosity which
is non-linear in ¥ and applying the limit of the 3 variation
disappearing) that the density and velocity evolves at large
times as

_ %o exp[—r272/(bT)]

S(r,7) e (13)
and
_ r
Vr(r,7) = Ro @) (14)

where vy, Ro, r and 7 are as defined below equation (IJ),
Yo is the density normalisation constant, b = 3(2 — 3)? and
¢ =1-1/(4 — 28). This result shows that for fixed r the
density at large time varies approximately as a power law
in time. At fixed r and large 7 the density decreases in time
for 8 < 3/2, remains constant in time for § = 3/2 and in-
creases in time for 3/2 < 8 < 2 as a consequence of the mass
flux variation in radius. Therefore, the density approaches a
nonzero steady-state value only for 8 = 3/2. For 0 < 8 < 2,
the spatial variation of the density at large fixed time does
satisfy equation (2] where the proportionality constant in
that equation generally depends on time. For 0 < # < 2,
at fixed radius the radial velocity Vr at all radii approaches
the steady-state value of zero at large time.

The particle trajectory a(t) at large times is determined
by applying equation (4] in equation (§). We find that

a(t)=dr"/*" (15)



4  R.G. Martin, S.H.Lubow, J.E. Pringle €& M C. Wyatt

100

80 - —

60 [~ -

a/AU

I R T T TN AN T O SN NN SR T S NN S S

0 2x108 4x108 6x108 8x108 107
t/yr

Figure 1. Particle paths as a disc changes from accretion to
decretion. The vertical axis is the particle orbital radius in AU
and the horizontal axis is the time in years. The disc viscosity is
given by equation (B) with 3 = 3/2 and the disc inner edge is
located at R;, = 5AU. At time ¢t = 0 the disc is taken to be a
steady accretion disc. The solid lines are for paths located in a
disc that is initially truncated at Ry = 100 AU. The dashed line
is for a path in a disc with Rt = 20 AU. The effect of a central
torque is provide by the boundary condition on the radial velocity
VR = 0 at the disc inner edge.

and
d d 755
a _ VoaT?2-
% - VR(Q(t)Jf) - Rg 2 _ﬂ7 (16)

where d is a constant with units of length along each particle
path which is determined by its initial radius and radial
velocity. Equation (I&) shows that the evolution at large
times proceeds as the particles in general move to large radii
for 0 < B < 2. However if d = 0, the path remains fixed at
small radii. This situation occurs for example at the disc
inner boundary. Even small values of d eventually lead to
outflow to large distances if the disc survives for a sufficiently
long time.

Equation (6] provides the Type II migration velocity
in a decretion disc. Notice that Vr goes to zero at large
time for 0 < B < 1, is constant for § = 1 and increases
in time for 1 < @ < 2. There is a marked difference in
behaviour between the (Lagrangian) particle velocity and
the (Eulerian) velocity at fixed R, as discussed earlier which
always vanishes at large t. The reason for the difference is
that a particle having d > 0 will never experience viscously
relaxed conditions as it moves outwards while the velocity at
fixed radius declines to zero over several local viscous times.
This is a consequence of the particle velocity being of order
the characteristic viscous propagation speed ~ v(a(t))/a(t)
for d ~ Ryp.

The computations described in this Section can be
taken as the limiting case of what happens if a stellar com-

panion or massive planet is introduced and truncates the
outer disc at an inner radius of 5 AU. The paths traced by
the particles represent the radial motion of a light planet
undergoing Type II migration in the outer disc. In this case
direction of motion of the light planet is reversed on the
local viscous timescale and the planet can eventually be ex-
pelled to a large radius by the presence of the inner objects.
The simplifying assumptions made in this Section imply that
there is an infinite source of angular momentum at the inner
disc edge. In the next Section we describe a more realistic
calculation with the two planets and the disc all of finite and
comparable, mass.

3 TWO PLANETS

In this section we consider the migration of two planets
in the disc. We shall take the inner planet to have mass
M, = 5Mj and the outer planet to have mass Mz = 1 Mj.
We use a model of planetary migration in a disc similar to
that of Armitage et al. (2002). This is a one-dimensional
model evolving by internal viscous torques and external
torques from planets embedded in the disc (Goldreich &
Tremaine 1980, Lin & Papaloizou 1986, Trilling et al. 1998,
Trilling, Lunine & Benz 2002). We consider only planets
massive enough to open a clean gap, i.e. pure type II migra-
tion, and cases where the planets are sufficiently well sepa-
rated that there is gas between them. If they are too close,
this is not the case and the evolution proceeds in a different
manner from that found in this paper (e.g. Kley, Peitz &
Bryden, 2004).

The criterion given by Lin & Papaloizou (1986) for the
opening of a clean gap, and so for the validity of simple Type
IT migration, can be written in terms of the local Reynold’s
number Re = R*Q/v, where R is the radius of the planet’s
orbit and €2 the angular velocity of the disc flow there. The
condition for gap opening is that

Re > 40 (%)2 <%)3, (17)

where M is the mass of the star and M the mass of the
planet. The detailed protoplanetary disc models of Bell et
al. (1997) suggest that to a reasonable approximation we
may assume H/R = 0.05, and so we make this assumption
throughout. For a planet mass M, = 1 M; and for this value
of H/R this implies that Type II migration occurs when
Re > 5.5 x 103. If v = caes H then the Reynold’s number can

be written as
R\’ 1
Re=|(—=) —. 18
= () 3 (18)

For the value of «a given by equation [ with 8 = 3/2, we
find Re = 2.55 x 10°(R/AU)~'. If these estimates hold,
then we conclude that we may safely assume simple Type 11
migration for the calculations in this paper.

In practice, there may be some flow through the gap
when full 2D or 3D effects are taken into account in the sim-
ulations (Artymowicz & Lubow, 1996; Lubow & D’Angelo,
2006). D’Angelo, Lubow & Bate (2006) find that for plan-
ets on circular orbits, and with Re ~ 10°, the 1D migration
rate agrees to within a few percent with 2D simulations for
planets whose masses are of order 1 My and greater.



Recently Crida, Morbidelli & Masset (2007) and Crida
& Morbidelli (2007) have pioneered a more sophisticated
approach which involves modelling the gas flow close to the
planet using an evolving 2D grid, combined with the 1D
approach for the rest of the disc. For a planet with mass
M, = 1Mj and a disc with H/R = 0.05, they find that clean
Type II migration occurs only when the local Reynold’s
number exceeds 10, For Reynold’s numbers 10* < Re < 10°
the torque felt by the planet is reduced relative to the
usual Type II torque by a factor of order Re/ 10°. For lower
Reynold’s numbers the torque is found to reverse.

In this paper we are interested in the migration of
a nominal 1 Mj planet from around 10 AU to 200 AU, for
which our Reynold’s numbers are in the range 2.5 x 10° to
10*. If the work of Crida & Morbidelli (2007) is correct, then
the results given here overestimate the efficiency of outward
migration by as much as an order of magnitude. However,
since the critical Reynold’s number varies as the square of
planetary mass (equation [IT)), the results, suitably scaled,
would still be valid for the outward migration of a planet of
~ 3Mj.

In view of the uncertainty of the actual time-dependent
properties of planet forming discs, in particular with regard
to disc thickness and magnitude of viscosity in comparison to
the simple formulae employed here, in the following we shall
simply use the standard Type II migration torque formulae.
We shall find that the conditions under which outward mi-
gration can be achieved are limited, and it therefore needs
to be borne in mind that they may in fact be more limited
still.

In this case, the governing equation becomes

= _10 [3R1/2i(uERl/2)]
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where A;(R,a;), for i« = 1,2, is now the rate of angular

momentum transfer per unit mass from planet i to the disc
where a;(t) is the distance of the planet from the star of
mass M,. In Section 4] we shall consider the possibility of
mass loss from the disc caused by a wind, represented by
the term Z.]W(R7 t) on the right-hand side of the equation. In
this Section we consider the case for 3y (R, t) = 0.

We take the torque distribution to be of the form

_ GG, (£)4 if R < a;

MRy =4 2R A8e/, (20)
GOM. (i) iR s g
2R\ A, -

(Armitage et al. 2002) where g¢; = M;/M, is the ratio be-
tween the mass M; of planet ¢ and that of the star and
AP :max(H,|R—a|), (21)

where H is the scale height of the disc. As remarked above,
we assume H = 0.05R. By Newton’s third Law, the orbital
migration of planet ¢ occurs at a rate

dai a; 1/2 4 Rous
- A RdR, 22
i) (i) [ jmnen e

(Lin & Papaloizou 1986). Note that we neglect the gravita-
tional interactions between the two planets.
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As before, we solve equation (I9) on a fixed mesh which
is uniform in the variable z = R'/?, by using a simple first
order explicit numerical method. We use 4000 grid points
with an inner boundary at Rin, = 0.01 AU and an outer
boundary at Rout = 900 AU. We take zero torque bound-
ary conditions at both Rin, and Rous. The outer boundary
is large enough to not affect the disc. The inner boundary
condition allows all material arriving there to be accreted
by the central star. Because the viscous torque is given by

G= —27wER3%

= 3mS(GM,R)"?, (23)

assuming Q = (GM/R®)'/? for a Keplerian disc, the bound-
ary conditions are implemented by taking ¥ = 0 at Ri, and
at Rout'

We assume that the planets are initially located at radii
a1 = 5AU and a2 = 10AU and that the viscosity is de-
scribed by equation (@) with 3 generally equal to 3/2. Be-
cause our interest is in discovering what conditions are re-
quired to enable a sufficient degree of outward migration,
we adopt a highly simplified initial disc density distribution
and gap sizes which we describe below.

Over time, the disc gap sizes in the simulations adjust,
since they are determined dynamically by a competition be-
tween tidal and viscous torques. In each of the three ranges
of radii, (Rin,a1), (a1,a2) and (a2, Rt), we assume that the
initial surface density profile is as given by equation (), ex-
cept that we may adjust the amount of mass in each region
by setting the local value of ¥y. We consider a form of the
initial density distribution that permits the specification of
the disc mass interior to the planets (inner disc), between
the planets (between-planet disc) and exterior to the outer
planet (outer disc).

We take the initial surface density distribution to be of
the form

Yoin if Rn < R< a1 —Aar-,

0 ifar —Aai- < R<ay +Aa1+
Yo = Yovet if a1 + Aa1+ < R<as—Aaz_ (24)
0 ifag—Aa27<R<a2—|—Aa2+

Yoout if a2z + Aaz+ < R < Ry.

Here the gap widths Aa;+ are chosen so that the mass re-
moved from the disc (inner, intermediate, or outer discs)
to form the gap is equal to the half mass of correspond-
ing planet, provided the disc mass is nonzero. We shall find
below only in some circumstances can sufficient outward mi-
gration be achieved. For this reason we do not assume the
surface density is the same across gaps. In addition, this disc
is initially truncated at some radius Ry < Rout-

3.1 Disc only between the planets

Disc mass that is located outside a planet’s orbit provides a
negative torque on the planet which pushes it inwards. The
higher the outer disc mass the stronger the torque and so
the faster the inward migration. Similarly, disc mass located
inside a planet’s orbit creates a positive torque which pushes
it outwards. A minimum requirement for the model under
consideration here is that the inner planet can transfer an-
gular momentum to the outer one. For this to be able to
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Figure 2. Plot of disc surface density as a function of radius. At
time t = 0 there is a 5 My planet at a; = 5AU and a 1 Mj planet
at 10 AU. The gaseous disc has 8 = 3/2 and consists of 5Mj
distributed only between the planets. The density distribution at
t = 0 is shown by the dashed line. The subsequent evolution of
the surface density is shown at times 4.0 x 104, 1.4 x 10%, 2.5x 105,
5.5x10% and 1.8 x 108 yr with the peak of the distribution moving
monotonically inwards.

happen there must be disc mass between the planets. We
consider first what happens if there is only a disc between
the two planets, i.e., Zoin = Zoous = 0 in equation (I?Zl) In
Figure [2] we plot the surface density evolution for the sys-
tem with two planets, a 5 Mj inner planet and a 1 Mj outer
planet with a 5M; gaseous disc between them. As seen in
Fig[2l the peak of the density distribution moves inwards in
time and simultaneously the density spreads outward. Since
the disc lies at all times between the two planets, it is ev-
ident that as the inner one moves inwards, the outer one
moves outwards.

Figure[Blshows the inward and outward migration of the
two planets in this case. We also show the effect of varying
the amount of disc mass between the two planets. It is ev-
ident that the more mass there is between the two planets,
the faster they migrate, even though the viscous evolution
timescale 7, ~ R?/v o< R~ is a fixed function of radius, in-
dependent of surface density. The dependence comes about
because a higher mass disc exerts stronger tidal torques on
the planets. In strict Type II migration, the migration rate
is independent of the disc mass. However, Type II condi-
tions do not hold here because there is no disc interior to
the inner planet and the planet mass is comparable to the
disc mass. For higher mass initial discs, there is more angu-
lar momentum in the system which aids the outer planet’s
migration to larger distances.

In practice the inner planet would eventually fall into
the star. At an age of 5 x 10°yr, a 1My protostar has a
radius of 1.5 Rg (Tout, Livio & Bonnell 1999). Using their
model (Tout, private communication) and equation (6) of
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0 2x108 4x108 6x108 8x108
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Figure 3. Migration of the planets as a function of time for
the case when the disc mass is distributed only between them
according to equation (24) with Zgin = Zoout = 0 . The initial
configuration of the planets is as described for Figure[2l The five
lines drawn in each plot correspond to different amounts of gas
distributed between the planets. With increasingly rapid rates of
migration, the amounts of gas are 1My, 3Mj, 5Mjy, 10 My and
20 M. The upper plot is for the outer planet (moving outwards
from 10 AU) and lower plot for the inner planet (moving inwards
from 5 AU).

Rasio et al. (1996) we find that tides in the star capture the
planet when it is about 2.7 R = 0.0125 AU from the star.
At this radius, the tides cause the planet to fall into the
star faster than the disc pushes it in. This radius is in line
with our choice of inner disc boundary at 0.01 AU. Once
the inner planet has moved in this far it has surrendered all
of its angular momentum and so is no longer driving any
decretion or outward migration of the outer planet.

3.2 The effect of an inner disc

We now consider the effect of disc material located at radii
R < a1, interior to the inner planet, so that ¥oin is nonzero
in equation (24)). In Figure M we compare models having
5Mj between the planets with and without disc matter lo-
cated inside the inner planet. The migration of planets with
no inner disc is reproduced from Figure 3. For comparison
we show the case (dashed line) where the initial surface den-
sity between the planets is the same but the surface density
profile is then continued inwards to the inner radius with
Yoin = Yobet. For this case with mass interior to the inner
planet, the inner disc mass is 15.9 M.

We see that the mass interior to the planets causes the
outer planet to migrate outwards faster. The inner planet
also migrates inwards more slowly. This is a consequence of
the inner disc providing a positive torque on the inner planet
and an additional source of angular momentum.
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Figure 4. Migration of the outer planet as a function of time.
In each case the inner planet starts at 5 AU and the outer planet
at 10 AU. The fiducial configuration (upper solid line) consists
of an inner 5Mjy planet, an outer 1 Mj planet and a § = 3/2
gaseous disc consisting of 5 Mj distributed between the planets.
The fiducial configuration is the same as the 5 My disc case plotted
in Fig[Bl The plots described below refer to configurations that
consist of a single variant on the fiducial case. The lower solid
line has the viscosity law with 8 = 1. The dashed line is for a
configuration with gas interior to the inner planet (see Section
3.2). The effect is to speed the outward migration of the outer
planet and to slow the inward migration of the inner planet. The
dotted lines show the effect of changing the mass of the inner
planet. When the inner planet has a mass of 10 My (upper dotted
line) the outer planet is forced outwards more rapidly and the
inner planet moves inwards more slowly. Conversely, when the
inner planet has a mass of 1Mj; (lower dotted line), the outer
planet is forced outwards more slowly and the inner planet moves
inwards more rapidly.

3.3 Effect of the mass of the inner planet

In Figure M we also show the effect of changing the mass
of the inner planet. The two dotted lines show the differ-
ence in migration for the inner planet mass of 1 Mj versus
10 Mj. We see that with a more massive inner planet, the
outward migration of the outer planet proceeds on a shorter
timescale. As we increase the mass of the inner planet, it
migrates more slowly towards the star. In strict Type II
migration, the migration rate is independent of the planet
mass. However, Type II conditions do not hold here because
there is no disc interior to the inner planet and the planet
mass is comparable to the disc mass. The migration rate of
a single planet with similar disc conditions decreases with
planet mass but is accurately described by 1D models for
circular orbit planets with Re = 10° (D’Angelo, Lubow, &
Bate 2006). The result is that the gas between the planets
moves in more slowly and hence that the outer planet mi-
grates outwards more rapidly, closer to the case described
in Section
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3.4 Effect of 3

In Figure ] we also show the effect of varying 3, the expo-
nent of R in the assumed viscosity law while maintaining a
constant viscosity value at radius 1 AU in equation (@). We
note that for 3 = 1 the Reynold’s number Re o< R~/2 falls
off more slowly with radius, thus increasing the range of va-
lidity of the Type II migration torque formulae. For § = 1,
the viscosity is smaller at large radii throughout the fiducial
disc in Figure[d] and so the overall viscous timescale o< R2/u
increases. As a consequence we see that migration to large
radii occurs on a much longer timescale with smaller 3.

3.5 Effect of an outer disc

Finally in this section, we consider the more realistic case
of the surface density distribution extending both interior
to and exterior to the pair of planets, i.e., Yoin and Yoout
are both nonzero in equation (24). The disc is initially trun-
cated at Ry = 20 AU unless otherwise stated. We consider
several values for the disc mass exterior to the outer planet
while 5 M of disc mass resides between the two planets and
15.9 M interior to the inner planet. The mass distribution
follows equation (24) and the outer disc mass is varied by
changing parameter Ygout. In Figure B we plot the migration
of the planets for various values of the outer disc mass.

As we would expect with more mass in the outer disc,
the outward migration of the outer planet is slower and
sometimes reverses. With 0.1 My in the outer disc the mi-
gration is not very different from the case of no outer disc.
With 2 Mj in the outer disc, the planet migration is initially
outwards. However, the torque from the outer disc is strong
enough to reverse the migration back towards the star. Once
the inner planet has fallen into the star, the outer planet con-
tinues to migrate inwards and the disc behaves as a simple
accretion disc.

In each of these cases, there is a jump in surface density
(from Xoins to Xoout) across the radius of the outer planet. If
there were no jump then for Ry = 20 AU and My, = 5 My,
the outer disc mass would be 16 Mj. This mass is greater
than the outer disc mass for the plotted models. For this
outer disc mass it is clear that the outer planet would not
migrate out very far before it gets pushed back in by the
large torque exerted by the outer disc. We also investigated
the case of a smaller disc that had no surface density jump
across the outer planet, This configuration has a 1 My outer
disc with initial truncation radius Ry = 11.12 AU. The evo-
lution of this model is not very different from our model
truncated at R = 20 AU with the same mass outer disc.
We conclude that the outer disc mass has more influence
on outer planet migration than the initial disc truncation
radius. To demonstrate this further, we also show in Fig-
ure [B] the effect of increasing the truncation radius of the
disc while keeping the outer disc mass fixed.

The torque from the outer disc acting on the planet
is determined by the surface density close to the planet.
Suppose we fix the initial mass of the outer disc but vary
its distribution. Because the outer disc is a decretion disc,
within one of its own viscous times it relaxes to have ¥
R+ 113 > 1/2, then the mass is concentrated at the
inner edge and so for a given mass, the surface density close
to the planet is roughly the same.
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Figure 5. Migration of the outer planet as a function of time
for different mass outer discs. Each case consists of a 5 Mj inner
planet that starts at 5 AU, a 1 Mj outer planet that starts at
10 AU, a gaseous disc 5 M that is distributed between the planets
and an inner gaseous disc of 15.9 Mj. The amount of gas in the
outer disc, exterior is the outer planet, is varied in the plots. The
gaseous discs have 8 = 3/2. The solid lines plot cases when the
outer disc is initially truncated at 20 AU. The uppermost solid
line corresponds to the outer disc containing only 0.1 Mj and is
almost indistinguishable from the case of there being no mass in
the outer disc, shown in the dashed line in Figure @ and here.
As the mass in the outer disc increases with masses of 0.1 Mj,
0.5Mjy, 1Mj and 2Mj, the inner planet migrates inwards more
quickly and outward migration of the outer planet is increasingly
slowed and even reversed. The dotted lines plot cases with 1 and
2Mj in the exterior disc but with the matter in the outer disc
now distributed out to a much larger truncation radius of Ry =
100 AU. This demonstrates that the migration behaviour depends
predominantly on the total mass in the outer disc, rather than on
its distribution for a 8 = 3/2 disc.

The time the outer disc takes to relax depends on the
viscous timescale of the initial mass distribution. The longest
viscous timescale at that time depends on Ry (for 8 < 2).
What really matters is the viscous timescale at the radius
where most of the mass is initially. For § > 1 most of the
mass is initially at the inner edge. So for # > 1 the initial
transient timescale does not depend on R;. Conversely, for
8 < 1, the mass is predominantly initially at R and so the
relevant timescale does depend on Ry.

Consider a decretion disc with the Vg = 0 inner bound-
ary condition. It can be shown that the torque is given by
Equation 23levaluated at R = R;, which follows from the az-
imuthal force equation. The initial surface density for steady
accretion with 8 = 1 corresponds to a disc mass

Maise = 2ﬁZORin(Rt — Rin). (25)

At early times the density is the same as the initial one so
that for fixed Rin, G x Mdisc/(R: — Rin) at early times. At
late times X becomes independent of R; as the disc forgets
its initial conditions and approaches the self-similar solution.

300 |~ -

200 — —
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Figure 6. The position of the outer planet at a time ¢ = 4 Myr
is plotted against the amount of mass in the exterior disc for the
cases (solid lines) shown in Figure[l It is evident that in order for
the outer planet to be able to be driven to large radii, the amount
of mass in the exterior disc must be less than, or comparable to,
the mass of the outer planet (1 Mj in this case).

The torque becomes independent of R but remains linear in
Maisc. Hence we see that the migration of the outer planet
depends on the amount of mass outside it and not the dis-
tribution.

We plot in Figure[@the orbital radius of the outer planet
at a time t = 4 Myr against the exterior disc, Mout. As we
remarked before, the lower the mass in the outer disc, the
further the outward migration of the outer planet. For the
particular disc model we discuss here with 8 = 3/2, in order
for the outer planet to migrate to large radii (say > 100 AU),
the amount of mass remaining in the outer disc after the
formation of the outer planet needs to be less than, or of
order, the mass of the planet.

3.6 Effect of Planetary Accretion

Because the gap around the planet is in general not com-
pletely cleared, it is possible for accretion onto the planet
to occur. This effect is not always included in numerical
computations of disc torques. This is partly because high
numerical resolution is required in order to make sure that
the details of the flow of material onto the planet is properly
converged, and partly because of uncertainties about the re-
action of the planet to accretion in terms of dissipation and
radiation of accretion energy. Thus in torque computations
the planet is often represented either as a softened potential
or as a sink particle of fixed size.

There are however a number of estimates of accretion
rates onto planets in such discs. These have been considered
by (Veras & Armitage 2004), who give a fit to the accretion
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Figure 7. Migration (upper plot) and mass (lower plot) of the
outer planet as a function of time for different accretion rates on
to the outer planet. Each case consists of a 5Mj inner planet
that starts at 5 AU, a 1 Mj outer planet that starts at 10 AU, a
gaseous disc 5 My that is distributed between the planets and an
inner gaseous disc of 15.9Mj. The amount of gas in the outer
disc, exterior is the outer planet is initially 1 My but decreases as
mass is accreted on to the outer planet. The gaseous discs have
8 = 3/2. The outer disc is initially truncated at 20 AU. The solid
lines have no accretion on to the planet. The dotted lines have
f = 0.5 and the dashed lines have f = 1.

rates derived from numerical simulations in the form

M, = 1.668 f M1 <%) exp (— 1'15\)/[]‘"%) +0.04, (26)
where f is a constant parameter which we vary with 0 <
f <1and Mth = 3wvX is the accretion rate through the
disc further out from the planet. We consider the effect of
applying this formula to the outer planet. We neglect ac-
cretion on to the inner planet because the inner planet is
significantly more massive.

We remove the required amount of mass from the first
zones with non-zero mass outside the planet’s gap and ac-
crete the mass and angular momentum of this material on
to the planet. We consider the case of a 5Mj inner planet
that starts at 5 AU, a 1 My outer planet that starts at 10 AU,
a gaseous disc 5 M that is distributed between the planets
and an inner gaseous disc of 15.9 Mj. The amount of gas
in the outer disc, exterior is the outer planet is 1 M;. We
run models with f =0, 0.5 and 1. We see in figure (@) that
the accretion has little effect on the planetary migration,
in fact, the planets migrate further out with this accretion.
There are two effects here. First, the outer planet extracts
angular momentum from the outer disc and so moves out
more quickly. Second, the mass of the outer disc is steadily
reduced. We conclude that if the Veras & Armitage (2004)
formula is correct, then the effect accretion is small and all
our previous migration results would not be significantly af-
fected had we included accretion on to the outer planet.
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4 EFFECT OF PHOTOEVAPORATION

‘We have seen in the previous section that outward migration
to large radii is possible only if the outer disc, at radii R >
a2, is for some reason depleted of gas. One means of doing
this which we investigate here, is by photoevaporation.

The surface layers of a disc can be heated by the central
star to sufficiently high temperature that the gas can escape
the gravity of the star. Shu, Johnstone & Hollenbach (1993)
suggested that protoplanetary discs are dispersed because of
heating by ultraviolet radiation from the central star. The
ionizing flux creates a photoionized disc atmosphere where
the gas can become hot enough to be gravitationally un-
bound and escape from the system. The thermal energy of
the gas is greater than the gravitational binding energy be-
yond the gravitational radius

GM, M,
R = =5+ ~ 10 <M®> AU, (27)

where c¢; is the speed of sound in the disc’s HII atmosphere
at 10* K.

4.1 Photoevaporation only in R > Rg

Hollenbach et al. (1994) used detailed models of the density
at the base of the photoevaporating atmosphere and found
a wind mass flux as a function of radius given by

0 if R < Rq,

Y=< . —5/2 28
Yo <£) if R > Rg, (28)
Rg

where

¢ 1/2 RG —3/2 s 1
1041571) AU Mo AU Zyr
(29)

and ¢ is the rate of ionizing photons coming from the star.
This rate of change of surface density is plotted against the
distance from the star in Figure[§ as the dashed line. Alexan-
der, Clarke & Pringle (2005) analysed emission measures
and found rates of ionizing photons from the chromospheres
of five classical TTs in the range 10*' — 10** photons™!. We
calculate the total wind mass loss rate from the disc to be

Yo =1.16x10" (

My, = / 21 RYw dR = 450 RE
0

1/2 1/2
_ ~10 ¢ Rg 1
— 145 % 10 <71041571) (—AU) Mo yr .
(30)

We now consider the evolution of an initial setup as
described in Section 3.5 with a gas disc of mass of 5Mj
between the planets, an inner disc of mass 15.9 My and an
outer disc of 0.5 My but now allow for disc depletion accord-
ing to the formula given in equation (28] for various values
of the photon flux ¢. The results are shown in Figure[Q The
migration initially proceeds on a faster timescale than with
no mass loss by photoevaporation. This is because initially
most of the mass lost arises from the outer disc. This de-
crease in mass means the negative torque on the planets is
smaller and so they migrate outwards faster. However, once
the outer planet has moved significantly outwards, the main
effect of photoevaporation is to remove the gas from between



10  R.G. Martin, S.H.Lubow, J.E. Pringle & M C. Wyatt

d¥
dt

(R)/

d¥
dt

R/AU

Figure 8. The rate of change of surface density scaled to the
rate at Rg is plotted against radius. The dotted line corresponds
to photoevaporation only in the range in R > Rg, as given by
equation (28). The solid line takes account of possible outflow
from within that radius and is given by equation (BI.

the planets. Once sufficient gas has been removed, all con-
tact is lost between the planets and the inner planet is no
longer able to give up angular momentum to the outer one
and migration stops.

In Figure [[0] we show the results of an identical set of
computations, except that initially the amount of gas in the
outer disc is increased to 1 Mj. With stronger photoevapo-
ration, the distance the outer planet moves decreases and
its migration ceases due to disc dispersal.

4.2 Varying the radial dependence of the
evaporation rate.

There have been more recent suggestions that photoevap-
oration happens as far in as 0.1 — 0.2 R¢ (Liffman 2003,
Adams et al. 2004, Font et al. 2004). To simulate the effects
of this form of photoevaporation, we have taken the model
from the previous section and changed the gravitation ra-
dius to Re = 1 AU with the same range of ¢. In this case,
we find the photoevaporation has little effect on the disc.
This is because now photoevaporation mostly removes mass
from radii well within the planetary orbits. We have already
seen in Section 3.3 that the presence or absence of an inner
disc has only a limited effect on the migration.
Alternatively, in line with the ideas of Dullemond et
al. (2006) who model the photoevaporation as a Bernoulli
flow, we take the radial dependence of the rate of change of
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Figure 9. Migration of the planets shown as a function of time
accounting for the effects of photoevaporation. The upper plot
is for the outer planet and the lower plot for the inner planet.
The 5Mj planet starts at 5 AU and the 1 Mj planet at 10 AU.
There is initially a gas disc of mass of 5 Mj between the plan-
ets, an inner disc of mass 15.9Mj and an outer disc of 0.5Mj
which is truncated at 20 AU. The dotted lines show the effects
of photoevaporation according to equation (28]). The solid lines
are identical to the 0.5Mj exterior disc case shown in Figure
without photoevaporation, ¢ = 0. The line corresponding to the
lowest photon rate of ¢ = 10%0s~1 lies above solid the line for
¢ = 0. This is because photoionization in this case is able to re-
move some of the mass in the outer disc and so enables faster
outward migration. The line corresponding to ¢ = 1041 s~1 lies
above the ¢ = 0 line for some time initially for the same reason
but eventually photoevaporation removes enough disc material
from between the two planets to cut communication and so to
halt further outward migration. The same applies to the lines
corresponding to ¢ = 10%2s~1 and 10*3s~! with the halt in
migration occurring sooner for the larger photoevaporation rate.
The dashed lines use photoevaporation model described in equa-
tion BI) with ¢ = 104251

surface density due to photoevaporation as

-2
. o exp (% (1 — %)) (R—P;) if R < Ra,
Yw(R) = R\ /2

o (— if R > Rg.

Rg
(31)
The spatial form is the same as equation ([28) for R > Rc
but extends further inwards to smaller radii. We show this
graphically as the solid line in Figure 8l We see that in this
case, the peak surface density loss occurs at 0.25 Rg whereas
for equation (28]) the peak loss is occurs at Rg.

The dotted and dashed lines in Figure [9 show the mi-
gration of planets with discs undergoing photoevaporation
described by equation (28) and equation (BII), respectively.
We see that with the inner photoevaporation described by
equation (31)), the outer planet does not migrate out as far.
This is because the total rate of loss of mass is increased
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Figure 10. This plot describes the same configuration as Fig-
ure [9 except that here there is a higher initial outer disc mass
1.0 Mj. We plot the migration of the outer planet. As before, the
solid line corresponds to the case ¢ = 0 shown in Figure Bl The
dotted line corresponding to ¢ = 10%0s~1 lies at all times just
above the ¢ = 0 line for the same reason as discussed in Fig-
ure [@ The other dotted lines correspond, in order of decreasing
final radius in this diagram, to ¢ = 104,102, 10%3 s~ 1. By com-
parison with Figure [@ we see that for a given photon flux, or
photoevaporation rate, a larger initial mass in the exterior disc
leads typically to a larger final radius for the outwardly migrat-
ing planet. The dashed lines have the photoevaporation model
described in equation (BI) with ¢ = 104251

and so the disc is removed on a shorter timescale. The peak
in EW is now inside of the inner planet. Mass removed from
the inner disc has little effect on the migration of the planets
(see Figure []).

5 OBSERVED SYSTEMS

We now consider whether the mechanism discussed here for
moving planets out to large distances from the star can ex-
plain the structure of systems inferred to have planets at
R > 10 AU. Such systems have been discovered through di-
rect imaging (Chauvin et al. 2004) and interpreted in terms
of planet perturbations on dust discs (Wyatt et al. 1999).
Planets discovered through direct imaging have a rel-
atively high mass ratio. For example, the system 2MASS
1207334-393254 (2M1207) has a 5M; planet at 55 AU from
a 25Mj brown dwarf (Chauvin et al. 2004). The mass ra-
tio is closer to those in binary stars than for known star
planet systems (Lodato et al. 2005). Lodato et al. (2005)
argue that the planet could have formed in situ by grav-
itational instability but not through core accretion owing
to the prohibitively long planet formation timescales at this
distance. The planet could however have formed in a rea-
sonable time at 0.6 AU (Lodato et al. 2005). They suggest
that this is too near to the star for outward migration to
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provide the current separation. Using our simple model and
equation () we find that to drive out the planet to 55 AU
the inner planet would have to be comparable in mass to
the star 2M1207. In other words, for this scenario to work
we would require 2M1207 to have, or to have had, a close
binary companion, and the 5M;j planet must have formed
in a circumbinary disc. Assuming the companion is of sim-
ilar mass to 2M1207, equation ({l) implies that the current
planet parameters are compatible with a stellar companion
originally at 1.3 AU, and a formation location for the planet
of 2.9AU.

The inferred debris-disc planets are found in two differ-
ent types of systems, old systems and young systems. Most
are found in relatively old systems (much older than 10 Myr)
and inferred to lie close to the inner edge of a planetesimal
belt at greater than 30 AU. No gas is seen in these systems
(Dent et al. 2005) and the inner regions are devoid of dust
and planetesimals (Wyatt 2005b). The existence of plan-
ets are inferred from asymmetries in the structure of the
dust discs which have been imaged for the closest systems.
This type of system is typified by the debris disc around
350 Myr old Vega. The disc’s clumpy structure (Holland et
al. 1998, Wilner et al. 2002) has been used to infer the pres-
ence of a Neptune-mass planet currently located at 65 AU
from the star, since that structure can be explained by the
planet having migrated outward from 40 AU over 56 Myr
while trapping planetesimals at its resonances (Wyatt 2003,
Wyatt 2006). The modelling also permitted different planet
masses to have caused the same clumpy resonant structure
as that observed, as long as the migration rate is changed
accordingly.

It seems reasonable to assume that the migration sce-
nario proposed here could explain distant planets in systems
like Vega, since, if their existence is confirmed, the outward
migration of such planets would naturally explain both their
large orbital radii and the clumpy structure of their debris
discs. For this scenario to work, there are certain require-
ments on the outer planet:

(i) the migration must occur before the gas disc dissipates
for which we require a migration timescale of less than 6 Myr
(Haisch, Lada & Lada 2001), which means the planet mass
must be greater than 0.25 Mj to cause the observed clumpy
dust structure (Wyatt 2003);

(ii) to migrate by Type II migration at 40 AU the planet
must be greater than roughly 1 M; in order to open a gap
in the disc (Bryden et al 1999);

(iii) to have avoided detection in direct imaging surveys the
planet must have a mass less than 7M; (Macintosh et al.
2003, Hinz et al. 2006).

Thus we consider that a 2 Mj planet that migrated from 40
to 65 AU over 0.3 Myr could explain the observed disc struc-
ture, parameters which can be reproduced with the migra-
tion mechanism proposed here. The planet could also have
started closer in if there is some mechanism to remove ma-
terial from the resonances at high eccentricity.

This interpretation would make the prediction that
there was at one time (and possibly still is if it has not
already been accreted) a more massive planet close to Vega.
The fact that this system is close to pole-on (Aufdenberg
et al. 2006) indicates that such a planet would be hard to
detect by radial velocity measurements.
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However, we cannot escape from the requirement of the
proposed model that the outer disc be deficient in mass, in
order to provide outward migration. If the deficiency were
due to truncation, then the truncation would have to ap-
ply to the gas disc and not the solids. The reason is that
clumpy structure in the debris disc is modelled as planetes-
imals that were present during the migration process, and
which extended beyond the 2:1 resonance of the outer planet
at 1.59a2. This makes problematic the possibility that the
deficiency might have been caused by physical truncation
due to stellar encounters in a high density star formation
environment. However, photoevaporation of gas remains a
possible mechanism.

Planets have also been inferred from structures in young
5 — 20 Myr systems. Such systems have both dust and gas
at a wide range of distances. These are typified by 5Myr
old HD141569, for which tightly wound spiral structure at
325 AU (Clampin et al. 2003) has been used to infer the
presence of a planet of 0.2 — 2Mj at 235 — 250 AU (Wyatt
2005b). Spiral structure in a ring at 185 AU (Clampin et
al. 2003) may also be indicative of a Saturn mass planet at
150 AU (Wyatt 2005b). Like the planet in 2M1207, the plan-
ets in this system are unlikely to have formed in situ unless
by gravitational instability. However, the migration scenario
proposed here provides a viable mechanism through which
these planets could migrate out to their current locations fol-
lowing formation closer to the star, since an inner planet in
this scenario could equally drive out more than one planet.
If this interpretation is correct, then we would make the
prediction that a more massive planet exists, or existed, at
a distance of less than a few AU from HD141569. The mi-
gration must also have occurred on timescales much shorter
than 5 Myr, since some time is required after the migration
for the spiral structure to be imprinted on the disc (Wyatt
2005b).

The current distributions of gas and dust in this system
provide some clues as to whether this scenario is feasible.
There certainly appears to be a radially extended gas distri-
bution which might in the past have contained enough mass
interior to the planet at 150 AU to cause rapid outward mi-
gration (Jonkheid et al. 2006), and there is no evidence that
the mass exterior to the planets would have been sufficient
to prevent that migration. However, there are a number of
density variations in the radial distributions of gas and dust
which would be hard to explain within the context of this
model (Marsh et al. 2002; Merin et al. 2004; Goto et al. 2006;
Jonkheid et al. 2006). Such variations are likely caused by
processes not included in the current scenario, such as the
dynamical interaction between gas and dust (e.g., Takeuchi
& Artymowicz 2001, Krauss & Wurm 2005), photoevapora-
tion of gas near the gravitational radius (Clarke, Gendrin
& Sotomayer 2001), and grain growth which may have oc-
curred after the planetary migration.

6 CONCLUSIONS

We have shown that it is possible in principle for planets
to form at small radii and then to migrate out to large
radii from their star by means of planet-disc interactions.
The possible mechanism we discuss here involves the forma-
tion of a massive inner planet and of a less massive outer

planet suitably spaced in radius that there is enough gas be-
tween them to effect angular momentum transfer and suit-
ably spaced in time that the first to form has not migrated
too far before the formation of the second. In view of the
uncertainties surrounding the planet formation process, we
have not here addressed the plausibility of setting up such
a configuration.

We also require that tidal torques act efficiently on the
planet, even at large radii. This leads to a conflict of re-
quirements on the size of the disc viscosity in that a large
outward torque requires the opening of a clean gap and so a
small viscosity (e.g. Crida & Morbidelli 2007), whereas too
small a viscosity implies that the migration takes too long
and cannot take place before the disc has been dispersed.
Whether there is a finite range of viscosity between these
two constraints depends on the detailed properties of such
discs, and in particular on the unknown nature and magni-
tude of the disc viscosity (e.g. King, Pringle & Livio, 2007)

To compute the evolution of disc and planetary orbits
we have used a 1D disc approximation, used an idealised
model of the disc structure, and and have used a standard
formulation which attempts to estimate the interactive disc-
planet torques, under the assumption that the planets are
massive enough to open a clean gap. In reality it would be
better, but much more computer-intensive, to undertake the
disc/planet evolution while the torques are being computed
using 2D, or better 3D, hydrodynamics simulations for the
gas in the neighbourhood of the planet (c.f. Crida et al.,
2007), and to solve simultaneously for the local disc struc-
ture (for example assuming thermodynamic equilibrium, e.g.
Bell et al., 1997) and in addition taking account of heating
of the disc by the central star (e.g. Garaud & Lin, 2007).
But even so, there still remain sufficient uncertainties about
the basic physics involved that it is not always easy to assess
the degree to which such simulations reflect physical reality.
Even within a given set of simulations, with a fixed set of
assumptions, it is necessary to take some trouble to ensure
that the calculations have enough resolution that the torque
estimates have converged (see, for example, D’Angelo, Bate
& Lubow, 2005). Although we have made an attempt to esti-
mate its effects, it is clear that the degree, nature and effects
of accretion onto the planet have yet to be fully understood.
And in addition, almost all simulations so far assume that
the disc viscosity is some kind of fixed form of Navier-Stokes
viscosity, whereas in reality the viscosity is most likely due
to some form of magneto-hydrodynamics turbulence (e.g.
Nelson & Papaloizou, 2004), and may in the outer, cooler
parts of the disc be spatially confined to a small part of the
disc (Gammie, 1996).

Once the planet formation is complete, we find that for
significant outward migration to occur, it is necessary for
there to be very little or no disc mass exterior to the outer
planet: the lower the surface density exterior to the outer
planet, the faster and further the migration. One possible
way of achieving this is through dynamical truncation of the
disc, either by a fly-by in a dense environment or through the
presence of a distant binary companion or through a multi-
body interaction during the formation process (Clarke &
Pringle 1991). We have investigated the possibility that the
outer disc is reduced by photoevaporation. If the source of
photoevaporation is external, due for example to the nearby
presence of a hot star, then the disc can be evaporated from



the outside as we require (and as modelled in effect by Veras
& Armitage, 2004). In this paper we have investigated the
possibility of photoevaporation being caused by the central
star. We find that, since such photoevaporation depletes the
disc predominantly at around Rg ~ 10 AU, the general ef-
fect is in this case to hinder rather than enhance migration
to large radii.

The main conclusion from these calculations is that
while outward migration is indeed a feasible mechanism for
the production of gas giants at large distance form the cen-
tral star, the parameter space in which its occurrence is pos-
sible may, for the reasons given above, be somewhat limited.

Outward planet migration is also possible in circumbi-
nary discs. We consider the case that the binary’s angular
momentum is at least comparable to that of the surrounding
disc. Planets which open gaps undergo outward migration
in such discs, such as shown in Figure [Il The formation of
the planet can occur after the formation of the binary while
the disc is present. Unlike the case involving an inner planet
discussed above, the disc mass external to the planet need
not be small. The main issue is whether the disc behaves as
a decretion disc. Two-dimensional simulations indicate that
some material can accrete past the disc inner edge and onto
the binary (Artymowicz & Lubow 1996; Gunther & Kley
2002). The radial distribution of planets around binary stars
could be quite different from the single star case.

We have discussed briefly the possibility of applying
these ideas to observed systems. The major uncertainties in
making such applications are the timescales on which plan-
ets form, the radial positions at which they form and the
timescales on which gaseous discs evolve and are dissipated.
In this paper we have used a simple and idealised descrip-
tion of the viscosity whereas in reality the viscosity and in
consequence the migration timescales are functions of the lo-
cal disc properties as they evolve. Nevertheless we note that
at least some of the observed systems might be compatible
with the migration scenario discussed here.
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