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ABSTRACT

The scattering of small bodies by planets is an important dynamical process in
planetary systems. In this paper we present an analytical model to describe this process
using the simplifying assumption that each particle’s dynamics is dominated by a
single planet at a time. As such the scattering process can be considered as a series
of three body problems during each of which the Tisserand parameter with respect
to the relevant planet is conserved. This constrains the orbital parameter space into
which a particle can be scattered. Such arguments have previously been applied to the
process by which comets are scattered to the inner Solar System from the Kuiper belt.
Our analysis generalises this for an arbitrary planetary system. For particles scattered
from an outer belt directly along a chain of planets, based on the initial value of the
Tisserand parameter, we find that it is possible to (i) determine which planets can
eject the particles from the system, (ii) define a minimum stellar distance to which
particles can be scattered, and (iii) constrain range of particle inclinations (and hence
the disc height) at different distances. Applying this to the Solar System, we determine
that the planets are close to optimally separated for scattering particles between them.
Concerning warm dust found around stars that also have Kuiper belt analogues, we
show that, if there is to be a dynamical link between the outer and inner regions, then
certain architectures for the intervening planetary system are incapable of producing
the observations. We speculate that the diversity in observed levels of warm dust may
reflect the diversity of planetary system architectures. Furthermore we show that for
certain planetary systems, comets can be scattered from an outer belt, or with fewer
constraints, from an Oort cloud analogue, onto star-grazing orbits, in support of a
planetary origin to the metal pollution and dustiness of some nearby white dwarfs.
In order to make more concrete conclusions regarding scattering processes in such
systems, it is necessary to consider not only the orbits available to scattered particles,
but the probability that such particles are scattered onto the different possible orbits.

1 INTRODUCTION

The scattering of small bodies is an important dynamical
process in many planetary systems. One classic example is
the population of small bodies close to the Sun, many of
which originate further out in the Solar System, from where
they were scattered inwards. Near-Earth asteroids (NEAs)
originate in the asteroid belt. Many left the belt after be-
ing destabilised by resonances with Jupiter and then scat-
tered by the terrestial planets (Morbidelli et al. 2002). Vis-
ible comets are either objects scattered inwards from the
Kuiper belt or the Oort cloud (Levison & Duncan 1997).
The scattering of small bodies has not been considered in
detail for extra-solar planetary systems, mainly due to the
lack of constraints on the structure of the planetary system.
There is, however, evidence for small bodies in many extra-
solar planetary systems. Dust belts, known as debris discs
are seen around hundreds of main sequence stars (Wyatt
2008). Observations, particularly resolved images, suggest

that debris discs interact with planets (Kalas et al. 2005;
Moerchen et al. 2011; Greaves et al. 2005), etc. Assuming a
similar nature to our Solar System, it is reasonable to ex-
pect that scattering in these systems can also result in a
comet-like population. The expected level and distribution
of this comet population may differ substantially from the
Solar System, depending on the individual planetary system
architecture.

Evidence of such a comet-like population may exist
from observations of warm dust discs around a handful
of main sequence stars (Wyatt et al. 2005; Gaidos 1999;
Beichman et al. 2005; Song et al. 2005). Comets or asteroids
in the position of the observed dust belts have a short life-
time against collisions and drag forces. They cannot have
existed for the entire main sequence lifetime in their ob-
served position (Wyatt et al. 2007). One possible explana-
tion is that the material originated in a cold, outer belt.
It could be that we are observing a comet-like population,
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that is continuously replenished from scattering of mate-
rial from the outer belt by intervening planets (Wyatt et al.
2007). Alternatively, it could be a transient event, resulting
from the stochastic collision of two larger bodies (Song et al.
2005), maybe in a similar manner to the impact that formed
the Earth-Moon system. Or, material could be transported
inwards from the outer belt during a LHB type event
(Booth et al. 2009) or by drag forces (Reidemeister et al.
2011).

Another piece of evidence for the scattering of mate-
rial in exo-planetary systems comes from observations of
evolved stars. 25% of DA white dwarfs show unexpected
metal pollution (Zuckerman et al. 2003), whilst 1-3% of DA
white dwarfs with cooling ages less than 0.5Gyr have excess
emission in the infra-red consistent with a close-in dust disc
(Farihi et al. 2009). The composition of the polluting mate-
rial closely resembles planets (Klein et al. 2010) and there
is good evidence that it is not material accreted from the
inter-stellar medium (Farihi et al. 2010a). The best theories,
therefore, suggest that it originates in an outer planetary
system (Jura 2003; Gänsicke et al. 2006; Kilic et al. 2006;
von Hippel et al. 2007; Farihi et al. 2009, 2010b; Melis et al.
2010). As the star loses mass on the giant branch, dynami-
cal instabilities can be induced in the outer planetary system
(Debes & Sigurdsson 2002). These can lead to comets or as-
teroids being scattered by interior planets onto star-grazing
orbits, where they are tidally disrupted. Material from the
tidally disrupted asteroids or comets forms the observed
discs and accretes onto the star. The ability of evolved plane-
tary systems to scatter comets or asteroids onto star-grazing
orbits requires further detailed investigation, although previ-
ous work has considered an Oort cloud origin of the scattered
bodies e.g. (Alcock et al. 1986; Debes & Sigurdsson 2002).

In this work the scattering of small bodies in
an arbitrary planetary system is investigated. N-body
simulations are typically used to model such scat-
tering (Levison & Duncan 1997; Horner & Jones 2009;
Holman & Wisdom 1993). A deeper understanding of the
general properties of such scattering can, however, be
achieved using analytical arguments. Simulations of scat-
tered Kuiper belt objects have found that the scattering pro-
cess can be approximated as a series of three-body problems,
as the scattered bodies are passed from one planet to the
next (Levison & Duncan 1997). While such particles are un-
der the influence of one of the planets, their dynamical evo-
lution can be approximated by the circular restricted three-
body problem in which the orbits of the particles must be
such that their Tisserand parameters, Tp, (Tisserand 1896;
Murray & Dermott 1999) are conserved, where

Tp =
ap

a
+ 2

√

(1− e2)a

ap
cos(I), (1)

where a, e, I are the comet’s semi-major axis, eccentricity
and inclination and ap is the planet’s semi-major axis. This
conservation is so fundamental to cometary dynamics that
it is used to classify cometary orbits (Horner et al. 2003;
Gladman et al. 2008).

In this work we use the conservation of the Tisserand
parameter to constrain the orbits of scattered particles in
a planetary system with an arbitrary configuration. In sec-
tion 2 we discuss how planetesimals are scattered from an
outer belt, in an otherwise stable planetary system. We then

outline our constraints on the orbits of particles scattered by
a single planet in section 3, which we extend to two planets
in section 4 and arbitrarily many planets in section 5. In
section 6 we consider the application of this analysis to our
Solar System, systems with warm dust discs and polluted
white dwarfs.

2 SCATTERING OF PLANETESIMALS

During the planet formation process, a planet that forms in
a disc of planetesimals, will swiftly clear a zone around it,
both by scattering processes and resonant interactions with
the planet. Analytically the size of the planet’s cleared zone
can be approximated. Criterion for the overlap of mean mo-
tion resonances determine a region around the planet within
which orbit’s are chaotic (Wisdom 1980), whilst the Jacobi
constant can be used to determine the zone within which or-
bits can be planet crossing (Gladman & Duncan 1990). Sim-
ulations have shown that Neptune clears such a zone in less
than 105 yr (Levison & Duncan 1993; Holman & Wisdom
1993), but more generally one might expect 1,000 conjunc-
tions for this clearing to take effect (Duncan et al. 1989).
Material removed from this region may be ejected, whilst
some fraction remains on bound, eccentric orbits, with peri-
centres close to the planet’s orbit, forming an analogue to
Neptune’s scattered disc. After many scatterings some of this
material may reach far enough from the star to interact with
the Galactic tide (Tremaine 1993) and eventually populate
an analogue of the Oort cloud.

Planetesimals outside of this zone could in principle
be long term stable. However, N-body simulations of Nep-
tune and the Kuiper belt find that Kuiper belt objects
are still scattered by Neptune at late times (Duncan et al.
1995; Holman & Wisdom 1993; Levison & Duncan 1997;
Emel’yanenko et al. 2004; Morbidelli 1997). The Kuiper belt
has a complicated structure of stable and unstable regions.
The gravitational effects of Neptune and the inner planets
result in the overlap of secular or mean-motion resonances
producing thin chaotic regions, within the otherwise stable
region (Kuchner et al. 2002; Lykawka & Mukai 2005) and
small unstable regions within otherwise stable mean motion
resonances (Moons & Morbidelli 1995; Morbidelli & Moons
1995; Morbidelli 1997). Objects may diffuse chaotically
from stable to unstable regions (Morbidelli 2005). This
process has been shown to occur for Neptune’s 3:2
and 2:1 resonances, amongst others (Morbidelli 1997;
Tiscareno & Malhotra 2009; Nesvorný & Roig 2000, 2001;
de Eĺıa et al. 2008). Objects leaving mean motion reso-
nances in the Kuiper belt, in this way, may be the main
source of Neptune encountering objects at the age of
the solar system (Duncan et al. 1995). Many of these ob-
jects are scattered into the inner planetary system, and
could be the source of Centaurs or Jupiter Family comets
(di Sisto et al. 2010; Morbidelli 1997; Levison & Duncan
1997; Holman & Wisdom 1993).

The dynamical processes occurring in the Kuiper belt
may well be applicable to exoplanetary systems with a sim-
ilar structure, i.e. an outer planetesimal belt and interior
planets. The outer belt could be truncated by resonance
overlap (Wisdom 1980). Most particles would then inhabit
a predominately stable region exterior to this, containing
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small regions that are unstable due to the overlap of secu-
lar or mean motion resonances of the inner planets. Objects
could diffuse chaotically on long timescales from the stable
to unstable regions and be scattered by the outer planet.
Some of these scattered objects could enter the inner plan-
etary system, whilst some could be ejected.

In our consideration of the dynamics of material scat-
tered from the outer belt by interior planets, we find that
this dynamics is strongly dependent on the initial value
of the Tisserand parameter, with respect to the outermost
planet. Therefore, it is important to consider the value of this
parameter. Objects in the outer belt tend to have T > 3,
whilst in order that an object be scattered by the planet,
the Tisserand parameter must be less than 3. Hence, for
particles that are scattered at late times due to chaotic dif-
fusion into an unstable region, at the time of first scatter-
ing, the Tisserand parameter would be expected to be close
to 3. Simulations of our solar system found this to be the
case (Levison & Duncan 1997). Here, we consider the initial
value of the Tisserand parameter of such particles as an un-
known, with the expectation that objects scattered in the
way described will have initial Tisserand parameter values
just below 3.

As a final note, we point out that not all objects scat-
tered by Neptune originate from the cold Kuiper belt. The
two other main sources are Neptune’s scattered disc and the
Oort cloud. It is possible that similar classes of objects ex-
ist in exo-planetary systems, however, there is at present no
evidence for exo-Oort clouds or scattered discs. The distribu-
tion of the Tisserand parameter for such objects would differ
significantly from those that leave the cold Kuiper belt, in
particular for Oort cloud objects, where it is unconstrained
and T < 2 is possible. Therefore, for clarity and simplic-
ity, in this work we focus on the objects that originate in
an outer belt and that are first scattered by the outermost
planet, at the age of the system.

3 SCATTERING BY A SINGLE PLANET

Firstly we consider a system similar to that described in the
previous section, with a single planet, labeled by subscript
i on a circular orbit at ai and an exterior planetesimal belt.
We consider planetesimals scattered from the outer belt by
the planet. We make the simplifying assumption that plan-
etesimals only interact with the planet if their orbits directly
cross the planet’s orbit. This simplifies the following analysis
and enables analytical limits to be easily derived. However,
since in reality interactions will occur in a zone around the
planet, care should be taken in rigorously applying any of
the derived limits, in particular for more massive planets.
This will be discussed further in §7.

3.1 Orbital constraints

For a planetesimal with a given value of the Tisserand pa-
rameter with respect to this planet, Ti, the potential orbits
onto which it can be scattered are limited, no matter how
many times it interacts with the planet. The Tisserand pa-
rameter gives us no information about the probability for
any given interaction to scatter a planetesimal onto a given
orbit, nor the timescales for interactions to occur. It does,

however, limit the orbital parameters of the planetesimals
after the interaction, in terms of its pericentre, q, eccentric-
ity, e and the inclination, I , of its orbit with respect to the
planet’s. These constraints can be represented by a 3D vol-
ume in (q, e, I) space. A planetesimal, given an initial value
of Ti, may not be scattered onto an orbit with parameters
outside of this volume, in this simple example.

This parameter space can be fully mapped out analyt-
ically by re-writing Eq. 1 as

Ti =
ai(1− e)

q
+ 2

√

(1 + e)q

ai
cos(I), (2)

and noting that if the planetesimal is to remain on a bound
orbit, 0 < e < 1, −1 < cos(I) < 1 and q > 0 must apply.
In order that the particle is scattered by the planet its orbit
must cross the planet’s and thus Q > ai and q < ai must
apply. Applying these constraints to Eq. 2, places analyti-
cal bounds that define this 3D volume of permitted orbits.
Given the difficulties in presenting a 3D volume, we instead
present the 2D projection of this 3D volume onto the q − e

plane, I − q plane and e − I plane, shown in Fig. 1. The
analytical bounds are presented in Table. 1.

3.2 Minimum pericentre

Further examination of the q-e plot in Fig. 1 makes clear that
planetesimals cannot be scattered further towards the star
than a limiting value, qmin, determined by T. This value can
be calculated using constraints on the orbital parameters,
Q = ai and cos(I) = 1 (equivalent to the lower bound in the
q − e plane). For 2 < Ti < 3:

qmin

ai
=

−T 2
i + 2Ti + 4− 4

√
3− Ti

T 2
i − 8

. (3)

qmin as a function of Ti is shown in Fig. 2. The eccentricity
at qmin will be given by:

elim = Ti − 3 + 2
√
3− Ti. (4)

For Ti < 2, the lines Q = ai and cos(I) = 1 (positive
root) no longer cross and the parameter space in the q-e
plane is no longer bounded by Q = ai, rather by cos(I) = 1
(both positive and negative root). Therefore qmin → 0. This
can be shown to be true by considering the derivatives of
the lines:

dq

de
|cosI=1,q→0 >

dq

de
|Q=ai,q→0. (5)

Importantly this implies that the constraints on the
pericentre that apply to the orbits of objects with Ti > 2
are not applicable to those with Ti < 2; such objects can be
scattered onto orbits with any pericentre.

3.3 Ejection

A single planet can also eject planetesimals, given a suit-
able value of the Tisserand parameter. Unbound orbits (i.e.
those with e > 1) are not included in the plots in Fig. 1.
It is, however, possible to determine from the top panel of
Fig. 1 those values of the Tisserand parameter for which
the particles are constrained to bound orbits with e < 1.
The most eccentric orbits are those with pericentre at the
planet’s orbit (q = ai), therefore substituting into Eq. 2,
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Figure 1. The possible orbital parameters of particles scattered by a single planet, with a given value of the Tisserand parameter with
respect to that planet, Ti. This forms a 3-D parameter space, that is shown here projected onto the eccentricity-pericentre (q− e) plane,
the inclination-pericentre (I − q) plane and the eccentricity-inclination (e − I) plane. The limits of the parameter space are defined
analytically in the Table 1. The units of the pericentre is the planet’s semi-major axis and the dotted black line in the top row of plots
shows the line where the particle’s semi-major axis is equal to the planet’s (a = q

1−e
= ai).

(q = ai, e = 1, I = 0◦), we find that there is a limit
on the Tisserand parameter such that only objects with
Ti < 2

√
2 can be ejected. This has been previously calcu-

lated in, amongst others, Levison & Duncan (1997), using
the formulation for the Tisserand parameter of a parabolic
orbit. It should, however, be noted that this only applies
strictly for low mass planets. As the planet mass is increased,
as does the zone of influence of the planet. If we assume
that particles can interact with a planet if they are within
a distance ∆ from the planet, then a particle on a hyper-
bolic orbit with Tp = 3 and q = 9

8
ap can still be ejected if

q < ap+∆. ∆ will be a function of the planet’s Hill’s radius,
RH , for example if ∆ ∼ 2

√
3RH (Gladman & Duncan 1990)

Jupiter can eject particles with TJup = 3, whilst Neptune
cannot.

4 SCATTERING BY TWO PLANETS

Now consider a planetary system with an outer belt and two
interior planets, both on circular orbits. Particles from the
outer belt are scattered by the outer planet, 1. The main
possible fates of such particles are ejection, collision with a
planet or the star, further scattering interactions with this
planet, or scattering by the inner planet, 2. Many scattered
particles are scattered multiple times by the outer planet.
It dominates their dynamics for a certain period of time,
during which the Tisserand parameter, with respect to this
planet, T1, is conserved. At some point, the particle may be
scattered onto an orbit that overlaps with the inner planet
and it may be scattered by that planet. In such an inter-
action the Tisserand parameter with respect to the inner
planet, T2 would be conserved, rather than T1. Depending
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Plane Line Constraint Based on

q-e: upper dashed e = 1 + 2q3 − qTi + 2q3/2
√

2 + q3 − qTi cos(I) = ±1

q-e: lower dot-dashed e =
(1−q)
(1+q)

Q = 1

I-e: upper dashed cos(I) = Ti−1−e

2
√

1−e
Q = 1

I-e: upper dotted cos(I) = Ti−1+e

2
√

1+e
q = 1

I-e: lower dot-dashed cos(I) =
T

3/2
i

3
√

3(1−e2)

∂I
∂q

|e,Ti
= 0

I-q: upper dot-dashed cos(I) =
Ti(1+q)−2

2
√

2q(1+q)
Q = 1

I-q: lower dotted cos(I) = Ti

2
√

2q
e = 1

Table 1. The analytical boundaries on the parameter space constraining the potential orbital parameters of a particle scattered by a
planet, where the initial value of the Tisserand parameter is Ti. All units are in terms of the planet’s semi-major axis; ai = 1. For the
cases where more than one limit is stated, the upper of the two applies.

Figure 2. The minimum pericentre for a test particle scattered
by a single planet, as a function of the Tisserand parameter value,
from Eq. 3. For Ti < 2, qmin → 0.

on the new orbit, it is then likely that the particle is re-
scattered by the inner planet and for a certain period its
dynamics will be dominated by that planet.

We start by considering this simple situation where the
particle is passed from planet 1 to planet 2. This is used
to describe constraints on the orbits of scattered particles.
We then consider the possibility that particles are scattered
backwards and forwards between the two planets in sec-
tion 4.4.

4.1 Orbital constraints

For a particle scattered by the outer planet the Tisserand
parameter, T1, is conserved. The value of T1 constrains the
orbits, (q, e, I), of scattered particles to those shown in Fig. 1
that satisfy Eq. 2. Although only sets of the orbital param-
eters, q, e, I , that satisfy Eq. 2 are allowed, the full range of
possible values is given by:

q ∈ [qmin(T1), 1]

e ∈ [0, emax(T1)]

I ∈ [0, Imax(T1)], (6)

where qmin is given in Eq. 3,

Figure 3. The orbital parameter space as determined by the
Tisserand parameter, in the eccentricity-pericentre plane, for Ti =
2.9 (equivalent to the fourth plot on the top row of Fig. 1). The
bounds on this space are between the dashed (cos I = 1) and
dot-dashed lines (q = ai) and shown in green. The subset of this
orbital parameter space that can interact with an inner planet
placed at ain = 0.8ai is shown by the vertically hashed region,
whilst the subset that could interact with an outer planet placed
at aout = 1.5ai is shown by the horizontally hashed region. The
dotted line shows a = ai, the solid line q = ain and the triple
dotted dashed line, Q = aout.

Imax = cos−1(
√
T1 − 2), (7)

and

emax = 3− T1 + 2
√
3− T1. (8)

As mentioned earlier, if T1 > 2
√
2, then emax > 1 and

some orbits are unbound.
The particle may interact many times with the outer

planet, moving between orbits in this parameter set, until at
some point it encounters the next planet, 2. Only a subset of
the orbits specified by T1 can interact with the next planet,
2. These are shown by the green filled area in Fig. 3 and are
those orbits that cross the planet’s, with q < a2 and:

q ∈ [qmin(T1), a2]

e ∈ [eint(
a2

a1
), elim(T1)]
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Figure 4. The minimum pericentre for a test particle scattered
by two planets, as a function of the ratio of the inner planet’s
semi-major axis to the outer planet’s semi-major axis.

I ∈ [0, Imax], (9)

where,

eint =
a1 + a2

a1 − a2
. (10)

If a2

a1
< T1−2

4−T1
, then the set of orbital parameters with

I = Imax do not cross the inner planet’s orbit. This occurs if
the second planet is inside the maximum in I as a function
of q that occurs at q = T1−2

4−T1
a1 (see Fig. 1). In which case I

is constrained to be less than Iint rather than Imax, where

Iint = cos−1

(

T1(1 +
a2

a1
)− 2a2

a1

2
√

2(1 + a2

a1
)

)

. (11)

Once the particle is scattered by planet 2, T1 is no longer
conserved, instead the value of T2 when the particle is first
scattered by planet 2 is conserved. The range of possible
T2 values is determined by the initial value of T1 and the
planets’ orbits, specified by the ratio of the planet’s semi-
major axes, a2

a1
.

The minimum possible value that T2 can have occurs
for particles on orbits with minimum pericentre (q = qmin),
the correspond eccentricity (e = elim) and in the orbital
plane of the planets (I = 0◦). It is given by:

T2,min =
a2(1− elim)

qmin
+ 2

√

(1 + elim)qmin

a2
, (12)

where elim (Eq. 4) and qmin (Eq. 3) are functions of T1.
Since the Tisserand parameter (T2) is a monotonically

increasing function of q, T2 will be maximum for the orbit
with the largest value of the pericentre, q, that still crosses
the planet’s orbit, i.e. q = a2. For the range of T2 values
for orbits with q = a2, the minimum is at cos I = ±1 and
e = eX , where from the top line of Table 1,

eX = 1+2(
a2

a1
)3−(

a2

a1
)T1+2(

a2

a1
)3/2
√

2 + (
a2

a1
)3 − (

a2

a1
)T1.(13)

Hence, the maximum of T2 is given by:

T2,max = (1− eX) + 2
√
1 + eX . (14)

For the next time period the dynamics of the particle
is controlled by the second planet. It may be scattered once
or many times. Yet again, the particle’s orbit is constrained
to orbital parameters, (q, e, I), specified by the value of T2

and Eq. 2. This time, however, we consider the situation
where only T1 and the planet’s orbits are specified initially
such that it is only known that T2 lies between T2,min and
T2,max. The full range for the orbital parameters (q, e, I) is
therefore specified by:

qmin(T2,min) < q < 1 (15)

0 < e < emax(T2,min) (16)

0 < I < Imax(T2,min), (17)

where qmin is given by Eq. 3, emax by Eq. 8 and Imax by
Eq. 7, but as a function of T2,min rather than T1.

4.2 Constraints on which particles interact with

the inner planet

For specific planetary orbits, specified by the ratio of the
planets’ semi-major axes, a2

a1
, and strict constraints on the

initial value of the Tisserand parameter in the outer belt
(i.e. T1 close to 3), the orbits of scattered particles may
be constrained such that they never interact with the inner
planet. This occurs when the minimum pericentre to which
particles may be scattered by the outer planet is further
from the star than the inner planet’s orbit; qmin(T1) > a2

(Eq. 3) or :

−T 2
1 + 2T1 + 4− 4

√
3− T1

T 2
1 − 8

>
a2

a1
(18)

4.3 Minimum pericentre

In Sec. 3.2, Eq. 3, we determined the minimum pericentre to
which a single planet may scatter a particle. A similar calcu-
lation may be made for two planets, assuming that particles
are only passed once along the chain of planets. The min-
imum pericentre will depend on the Tisserand parameter
with respect to the outer planet, T1 and the ratio of the
planets’ semi-major axes, a2

a1
.

For a particle that is scattered by the outer planet,
with a value of the Tisserand parameter with respect to
that planet of T1, if it is then scattered by the inner planet,
the particle could have a range of possible values of the Tis-
serand parameter with respect to the inner planet, between
T2,min (Eq. 12) and T2,max (Eq. 14). Since qmin (Eq. 3) is a
monotonically increasing function of the Tisserand param-
eter, the minimum pericentre for scattering by both plan-
ets will be given by qmin(T2,min), where T2,min is the min-
imum value of the Tisserand parameter (Eq. 12). If a par-
ticle is to eventually be scattered inwards as far as possi-
ble by the outer and inner planet, it must be passed from
the outer to the inner planet with an orbit of eccentricity
e = elim(T2,min) (Eq. 4) and inclination, I = 0◦.

The minimum pericentre for a two planet system is
shown in Fig. 4 as a function of the ratio of the planets’
semi-major axes, a1

a2
. This is calculated from Eq. 3, such

that q = qmin(T2,min), where T2,min = T (q = ap, e =
elim(T1), I = 0◦), using Eq. 2. This has a clear minimum,
which occurs at:
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a2,min =
(1 + elim(T1))

1/3qmin(T1)

(1− elim(T1))2/3
, (19)

where elim and qmin are the minimum pericentre and limit-
ing eccentricity for scattering by the outer planet, given by
Eq. 3 and Eq. 8.

This means that the optimum configuration of two plan-
ets in terms of their ability to scatter particles as close to the
star as possible, involves planets positioned in semi-major
axis at a2,min and a1. It is interesting to note that the op-
timum position for the inner planet is not as close to the
star as the outer planet could possibly scatter particles i.e.

qmin(T1), but closer to the outer planet. This is because
there is a balance between moving the inner planet closer to
the star, decreasing a2, such that qmin is decreased directly
or moving the planet further from the star, increasing a2,
but decreasing T2 and thus qmin. Of course this does not
include any information about the probability that the par-
ticle is ejected or collides with the planet rather than being
ejected.

4.4 Further scattering

Scattering is not confined to the forward direction. Particles
may originate in the outer belt, be scattered inwards by the
outer planet, passed onto the inner planet, and then scat-
tered back outwards again to the outer planet. Constraints
on which particles might re-interact with the outer planet
can be determined using a similar procedure to that dis-
cussed in the previous section (Sec. 4.1) for particles passed
from the outer planet to the inner planet.

The possible values for the orbital parameters of par-
ticles scattered by the inner planet are determined by the
value of the Tisserand parameter, T2. A subset of these or-
bits cross the outer planet’s orbit, those with apocentres
outside of its orbit (Q > a1). For the example of an outer
planet at a1 = 1.5a2 and with T2 = 2.9, this subset is shown
by the hashed region in Fig. 3. Each set of orbital param-
eters in this region (q, e, I) will specify a possible value for
the Tisserand parameter with respect to the outer planet,
T1. The minimum possible new value of T1 occurs at the
maximum pericentre (q = a2), the maximum eccentricity
(emax(T2) Eq. 8) and cos I = 1, such that:

T1,new,min =
a1(T2 − 2− 2

√
3− T2)

a2
+2

√

(4− T2 + 2
√
3− T2)a2

a1
.(20)

If there are a range of values for T2, the smallest (e.g. T2,min

for Eq. 12) will give the lowest value of T1,new,min . The
maximum value of T1 such that particles can still interact
with the outer planet is 3, as for any scattering event.

If the particle is scattered backwards and forwards mul-
tiple times this procedure may be repeated to determine
the full range of Tisserand parameter values and potential
orbits. T1,new,min can be significantly lower than the ini-
tial value of T1 in the outer belt, particularly after multiple
scatterings backwards and forwards. Thus, this increases the
range of potential orbits of scattered particles.

This can be illustrated using an example system. Con-
sider a particle scattered by the outer planet, with T1 = 2.99.
The inner planet is placed arbitrarily at a2 = 0.7a1. The
minimum pericentre for the particle after the particle is scat-
tered by both planets, shown in Fig. 4, is qmin = 0.43a1. If

the particle is then scattered back outwards, the minimum
value of T1 is 2.93 (Eq. 20). If the particle is then scattered
back in, again from Fig. 4, this gives a new minimum peri-
centre for scattering by the two planets of qmin = 0.12a1. Af-
ter a further scattering backwards and forwards, qmin → 0;
all constraints on the eccentricity and pericentre of the orbit
are removed. Given sufficient repetitions this occurs for all
pairs of planetary orbits, where the constraints on the Tis-
serand parameter allow particles to be passed between them.
Thus, the orbital parameter space available to scattered par-
ticles can be greatly increased by repeatedly scattering them
backwards and forwards.

So far we have merely outlined the orbital parameter
space available to particles and not discussed the probabil-
ity for scattering particles into this space. This is in general
beyond the scope of this paper, however, these have impor-
tant implications for the passing of particles backwards and
forwards between the two planets. Firstly, it is clear that the
timescales for particles to be repeatedly scattered backwards
and forwards between two planets will be long and therefore
at any given time the probability will be higher that par-
ticles have merely been scattered by the outer planet, or
passed from the outer to the inner planet once. Secondly, al-
though repeated passing of particles between planets greatly
increases the range of orbital parameters available to such
scattered particles, this does not mean that it is most prob-
able for such particles to be scattered onto more extreme
(higher eccentricity or inclination) orbits. In fact, if we were
to assume that a particle has an equal probability of being
scattered onto any of the orbital parameters available to it,
it is most likely that the particle is scattered onto an orbit
that retains a value of the Tisserand parameter close to its
original value. It is only the few particles that are scattered
onto extreme orbits, i.e. with low pericentre or high eccen-
tricity/inclination, that have significantly reduced values of
the Tisserand parameter when they are scattered by the
next planet. Therefore, although it is possible that particles
may be scattered onto extreme orbits, with low values of
the Tisserand parameter, by being repeatedly passed back-
wards and forwards between the planets, we anticipate that
the probability for this to occur is low and we are therefore
justified in focusing on particles scattered directly along a
planetary system for the rest of the paper.

5 MULTI-PLANET SYSTEMS

All of the calculations discussed so far can be easily applied
to planetary systems with many planets. The procedure dis-
cussed in Sec. 4.1 can be repeated many times, to deter-
mine the full range of orbital constraints and values for the
Tisserand parameter after scattering by each planet. This
analysis places useful constraints on the planets with which
particles can interact, the planets that can eject particles
and the minimum pericentre to which the whole system can
scatter particles.

All of the dynamics is determined by the initial value of
the Tisserand parameter with respect to the outer planet,
T1, the outer planet’s semi-major axis, a1 and the ratio of the
planets’ semi-major axes to one another,

ai+1

ai
. Scaling the

system, i.e. changing the semi-major axes, ai, whilst keeping
their ratios,

ai+1

ai
, constant, will not affect the dynamics (val-
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Figure 5. The variation in the minimum pericentre to which
test particles can be scattered to by a system of five planets.
The ratio of the planets’ semi-major axes (α) is constant and is
given as a ratio on the bottom axis and in terms of separation
in Hill’s radii, for five 10M⊕ planets, on the top axis. The initial
value of the Tisserand parameter with respect to the outer planet
is varied between 2.8 and 3.0. The shaded region illustrates the
“unconstrained” regime for particles with T = 2.96, whilst the
region to its left is the “non-interacting” and the region to its
right is the “constrained” regime (see discussion in text).

ues of Ti) and merely scales the minimum pericentre, qmin,
with a1. In the next section, we discuss these constraints in
terms of an example planetary system.

5.1 A hypothetical 5-planet system with constant

ratio of planets’ semi-major axes

We apply these calculations to a system of 5 planets, sep-
arated by a constant ratio of adjacent planets’ semi-major
axis (

ai+1

ai
= α). This corresponds to a constant number

of Hill’s radii for equal mass planets. Our results are inde-
pendent of the planet masses. We fix the inner planet at
a5 = aIN and calculate the semi-major axes of the other
planets accordingly for a range of values for α.

The minimum pericentre to which this system can scat-
ter particles, shown in Fig. 5 as a function of α, is calcu-
lated by repeatedly determining the minimum value of the
Tisserand parameter for each planet. For the ith planet this
occurs at q = qmin(Ti+1,min) (Eq. 3), e = elim(Ti+1,min)
(Eq. 4) and cos I = 1.

In this plot scattered particles exhibit three types of be-
haviour. For simplicity we label the three types of behaviour
as “non-interacting”, “constrained” and “unconstrained”.
This refers to the constraints on the orbits of scattered par-
ticles. In the “non-interacting” regime, the planets are so
widely separated (small α) that particles cannot be scat-
tered all the way along the chain of planets. The minimum
pericentre to which one of the planets can scatter particles
is outside of the next innermost planet’s orbit. Hence the
particles are restricted to the region surrounding the outer
planet(s).

In the “constrained” regime, the planets are so close to-
gether (large α) that particles can be scattered between all
planets in the system. If they are only scattered once along

the chain of planets, the Tisserand parameter cannot vary
significantly from its original value and there will be a non-
zero minimum pericentre to which particles can be scattered.
For such closely separated planets, it may no longer be valid
to treat the scattering as a series of three body problems
and the probability that particles are passed backwards and
forwards between planets increases. This and the stability
of planets so close together question whether particles scat-
tered in any planetary system actually exhibit behaviour
reminiscent of this “constrained” regime.

As the separation of the planets is increased, the min-
imum possible value of the Tisserand parameter for each
planet decreases and hence the minimum pericentre for the
whole system decreases. Eventually the separation is large
enough that the Tisserand parameter falls below 2 and all
constraints on the minimum pericentre are removed. This
forms the third, “unconstrained” regime, where there are
few constraints on the orbital parameters of scattered par-
ticles.

In Fig. 6 the constraints on the eccentricities and incli-
nations of particles in the 3 regimes are shown. As particles
are scattered by each planet, from the outermost (1) to the
innermost (5), there will be a range of possible Tisserand pa-
rameter values, between Ti,min (Eq. 12) and Ti,max (Eq. 14)
and hence a range of possible orbital parameters, given by
Eqs. 17, although of course the approximations used to cal-
culate these may mean that they are not always strictly
applicable, see discussion in §7. It is the maximum incli-
nation and eccentricity that are important on this figure,
although of course the orbits of scattered particles will be
distributed between the minimum and maximum values, in
a manner not determined by this analysis. The plot shows
that, for this example with T1 = 2.96, almost all planets can
eject particles (e > 1) and that the scale height of the disc
(inclinations of scattered particles) increases with decreas-
ing distance to the star, as the constraints on the orbits of
scattered particles decrease with each successive scattering
event. It is clearly seen, as anticipated, that the constraints
of orbits in the “constrained” regime are much tighter than
those in the “unconstrained” regime.

Although very few real planetary systems have planets
separated by a constant ratio of their semi-major axes, it
may be possible to similarly classify the behaviour of scat-
tered particles within the three regimes and thus usefully
better understand the future fate of scattered particles.

5.2 Hypothetical multi-planet system separated

by 10RH

For real planetary systems the planets cannot be arbitrar-
ily close together as dynamical instabilities are important.
Chambers et al. (1996) find that planets must be separated
by at least 10RH to be stable. On Fig. 5, the separation
of the planets is shown in terms of Hill’s radii on the top
axis, for a system of equal mass 10M⊕ planets. This shows
that for the 10M⊕ planets considered, if they are separated
by 10RH , then the behaviour of particles is unconstrained
(qmin → 0). Only very low mass (< 10M⊕) systems may be
dynamically stable (separated by more than 10RH ) and have
limits on the scattering of particles, such that the particle’s
behaviour is in the “constrained” regime.

Such low mass systems are, however, unlikely to only
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Figure 6. Constraints on the eccentricities and inclinations
(Eq. 17) of particles scattered by a system of five planets with
constant ratio of the planets’ semi-major axes, α, and an initial
value of the Tisserand parameter in the outer belt of T1 = 2.96.
Particles are scattered from the belt, outside of planet 1, to the
innermost planet, 5. Three planet separations are considered,
corresponding to the three regimes (see discussion in the text);
“non-interacting”, α = 0.2, “unconstrained”, α = 0.6 and “con-
strained”, α = 0.9. The dashed regions correspond to the param-
eters of particles that can interact with the next interior planet
(Eq. 9). The particles with high eccentricity were scattered out-
wards and therefore are not on orbits that cross the inner planet’s
orbit.

contain 5 planets. One possible outcome of planet forma-
tion, is a chain of low mass planet embryos and an outer
disc of planetesimals. Consider the example of such a disc in
the position of the Solar System’s Kuiper belt and a chain of
interior, equal mass planets, between 1 and 30AU. If plan-
ets generally form on orbits as tightly packed as possible
(Barnes & Raymond 2004; Raymond et al. 2009), then their
separation will be ∼ 10RH . We investigate the dynamics
in such a system by varying the planet mass and thus the
number of planets that fit between 1 and 30AU. This is
equivalent to varying α. The results are shown in Fig. 7.
The behaviour is identical to the five planet system in the
“non-interacting” and “unconstrained” regimes, however the
“constrained” regime no longer exists. This is because the
interior planets further increase the parameter space avail-
able to scattered particles.

Figure 7. The same as Fig. 5, but for tightly packed planetary
systems, with equal mass planets separated by 10RH . The mass
of the planets is shown on the bottom axis, whilst the top axis
shows α. As many planets as fit between 1 and 30AU are included,
hence the minimum pericentre is no longer finite for large α.

6 APPLICATIONS TO REAL SYSTEMS

6.1 Solar System

This analysis can be applied to the planetary system that we
understand best, our Solar System. There are three possi-
ble sources of scattered bodies; the asteroid belt, the Kuiper
belt and the Oort cloud. Most of the discussion so far has
applied to the scattering of particles from a Kuiper-like belt,
however, very similar processes occur in the asteroid belt. As
discussed in §2, we anticipate that the Tisserand parameter
for objects scattered out of the Kuiper belt is close to 3. This
should also apply to asteroids scattered from the main belt
by Mars. The main difference between scattered asteroids
and scattered Kuiper belt objects will be in the distribu-
tion of the Tisserand parameter, TMars or TNep. This work
does not determine these distributions, however, we specu-
late that the distribution of TMars may be spread to lower
values than that of TNep. Jupiter is a strong perturber and
may be able to alter the orbital parameters of an asteroid
significantly in a single encounter. For Oort cloud comets
scattered by planets, on the other hand, the range of val-
ues of the Tisserand parameter is even larger, potentially
including many comets with Tp < 2. This means that al-
though this analysis is most usefully applied to scattered
Kuiper-belt objects, it can also be applied to scattered as-
teroids, but it cannot place many limitations on the orbits
of scattered Oort cloud comets.

Firstly considering objects scattered out of the Kuiper
belt. Useful constraints can be made on their orbits in the
outer planet region using this analysis; e.g. particle incli-
nations are constrained to be below a maximum value, for
example 80◦, for scattered Kuiper belt objects with TNep >

2.96, consistent with observations of Centaurs (Gulbis et al.
2010). It can also be inferred that the Solar System’s outer
planets are well placed for scattering particles between them.
If TNep 6 2.982 then particles can be scattered, directly,
all the way along the chain of planets to Jupiter and Ta-
ble 2 shows that using Eq. 19 the planets are placed close
to optimally for scattering particles as far inwards as pos-
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Planet Semi-major axis (AU)
Observed Optimum

Neptune 30.1
Uranus 19.2 21.1
Saturn 9.58 10.5
Jupiter 5.20 3.3

Mars 1.52
Earth 1.00 1.18
Venus 0.72 0.74

Mercury 0.39 0.33

Table 2. The semi-major axes of solar system planets, compared

the optimum semi-major axes in terms of scattering particles in-
wards. These were calculated using (Eq. 19) for objects scattered
from the Kuiper belt by Neptune with TNep = 2.98 and sepa-
rately for objects scattered from the asteroid belt by Mars, with
TMars = 2.98.

sible. The three regimes presented in §5.1 can be applied
to the Solar System to show that the majority of scat-
tered Kuiper belt objects exhibit behaviour consistent with
the “unconstrained” regime. These are shown in Fig. 8. If
TNep < 2.962, there are no constraints on the orbits of
scattered particles inside of Jupiter. On the other hand, if
2.962 < TNep < 2.982 the dynamics of scattered bodies are
“constrained” and there is a minimum value for the pericen-
tre of objects scattered by Jupiter, whilst if TNep > 2.982
the particles are “non-interacting” and cannot be scattered
into the inner planetary system.

Similar constraints can be made for asteroids scattered
into the inner planetary region. If TMars < 2.97 then scat-
tered objects behave as if they were in the “unconstrained”
regime and if TMars = 2.98, Eq. 19 can be used in a similar
manner to determine that the terrestrial planets are close to
optimally separated for scattering particles between them,
see Table 2. The important question, therefore, is what frac-
tion of scattered of asteroids have TMars ∼ 2.98. If TMars

is lower then issues arise with some of the approximations
used in this work. For example, particles may not be scat-
tered directly along the chain of planets. For TMars < 2.96,
the minimum pericentre to which asteroids may be scattered
by Mars is already inside of Venus’s orbit, qmin < aV enus

(Eq. 3). Particles may interact directly with Venus before
being scattered by Earth, or be scattered multiple times
by both Venus and Earth. As described in §4.4 this would
greatly increase the range of potential orbits for scattered
particles. Also mean motion resonances and secular effects
will play a greater role in altering the dynamics of scattered
asteroids than of scattered Kuiper belt objects, raising fur-
ther doubt as to the validity of this approach. It can nonethe-
less be used cautiously to further investigate the dynamics
of asteroids scattered into this region.

6.2 Warm dust discs

As discussed in the Introduction, there are many obser-
vations of stars with warm dust belts, e.g. (Gaidos 1999;
Beichman et al. 2005; Song et al. 2005). Many of the sys-
tems with warm dust also have cold dust belts, amongst

Figure 8. The minimum pericentre (qmin) to which Kuiper
belt objects can be scattered to by Neptune and the outer Solar
System planets (solid line) and similarly for asteroids scattered
by the terrestrial planets (dashed line), as a function of the ini-
tial value of the Tisserand parameter with respect to Neptune or
Mars, respectively. The shaded area illustrates the “constrained”
region, for scattered Kuiper belt objects with diagonal shading
in green and for scattered asteroids with vertical shading in red.
The “unconstrained” region lies to the left of the plot and the
“non-interacting” regime to the right.

others, η Corvi (Smith et al. 2009; Wyatt et al. 2005), βLeo
(Churcher et al. 2011) and ǫ Eri (Backman et al. 2009). The
analysis presented here can be used to consider the scatter-
ing of particles from an outer belt inwards, as a potential ex-
planation for the observed warm belts. Our main conclusion
is that the architecture of a planetary system determines
whether or not material can be scattered to the position of
the observed belt. We, therefore, speculate that the diversity
of planetary system architectures could result in the diver-
sity of observed systems, both in terms of disc radii and the
ratio of the flux from the outer to the inner belt. Although
this analysis does not determine what fraction of the scat-
tered particles end up in the position of the observed disc, it
does show that some planetary systems cannot scatter par-
ticles onto the required orbits and illustrates that when the
distribution of scattered particles is determined, tight con-
straints will be placed on the architecture of the planetary
system required.

Consider the example system of η Corvi, with cold and
warm dust. The inner belt is resolved and lies between 0.16-
2.98 AU (Smith et al. 2009), whilst the outer dust is at 150
± 20 AU (Wyatt et al. 2005). Although there are no plan-
ets detected in this system, it seems probable that there is
a planet close to the inner edge of the cold, outer belt, that
truncates it (Wyatt et al. 2005). We, therefore, consider a
planet at 100AU. If the Tisserand parameter with respect
to this planet is T1 = 2.96, then this planet alone could po-
tentially scatter particles in as far as 47AU (Eq. 3). In order
for particles to be scattered inwards to the location of the
warm belt, qmin < 3AU, at least three planets are required.
The optimum position for these planets is 58 and 23 AU,
with the outer planet at 100AU (Eq. 19). The orbits cannot
vary significantly from these values if the minimum pericen-
tre is to remain less than 3 AU. For example, if the planets
were positioned at 100, 80 and 60 AU, particles could only
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be scattered in as far as 6AU and thus the warm dust belt,
if it formed, would be at larger radii. Alternatively, there
could be more than 3 planets, the initial value of the Tis-
serand parameter could be less than 2.96 or particles could
be scattered multiple times backwards and forwards between
the planets, as discussed in §4.4.

6.3 Metal polluted white dwarfs and white dwarfs

with close-in circumstellar discs

Evidence of evolved planetary systems and scattering of
planetary material is found in the observations of metal pol-
luted white dwarfs (Zuckerman et al. 2003; Koester et al.
2005) and white dwarfs with close-in circumstellar discs
(Farihi et al. 2009). In order to explain these observations
with planetary material, comets or asteroids must be scat-
tered onto star-grazing orbits and tidally disrupted. The
analysis presented in this work can be used to determine
the feasibility of this explanation.

Planets are required to scatter comets or asteroids close
enough to the star. There are three potential reservoirs in an
evolved planetary system, a Kuiper belt analogue, an Oort
cloud analogue and if it survives an asteroid belt analogue.
This analysis shows that it is possible for particles from all
three reservoirs to be scattered onto star-grazing orbits, but
that this ability depends strongly on the planets’ orbits and
the initial value of the Tisserand parameter. The lower the
initial value of the Tisserand parameter, the more likely that
particles can be scattered sufficiently close to the star (the
lower qmin Fig. 2). Hence, the majority of particles from an
Oort cloud analogue can be scattered onto star-grazing or-
bits, whilst for a Kuiper or asteroid belt analogue this ability
is strongly dependent on the initial value of the Tisserand
parameter and the planets’ orbits. Asteroid belt analogues
have the advantage of lower initial values for the Tisserand
parameter, but the disadvantage that there may be fewer
surviving interior planets and the asteroid belt itself may
not survive until the white dwarf phase.

There are a large number of observations of Kuiper belt
analogues around main sequence stars (Wyatt 2008) and
models find that such systems survive the star’s evolution
(Bonsor & Wyatt 2010). Such belts have been suggested as
the source of the metal pollution e.g. Jura (2008), although
there is little evidence that they are capable of scattering
particles sufficiently close to the star. Here, we show that it
is possible for some planetary systems to scatter particles
from an outer belt onto star-grazing orbits, but that there
are tight constraints on the planets’ orbits and the initial
value of the Tisserand parameter in the outer belt.

One potential hindrance in the ability of an evolved
planetary system to scatter particles onto star-grazing or-
bits is the absence of inner planets due to the star’s evolu-
tion. Villaver & Livio (2007) find that white dwarfs should
not possess planets within 15AU due to a combination of
the increased stellar radius, tidal forces and stellar mass
loss. In order for a planet at ai = 15AU to scatter parti-
cles onto star-grazing orbits (qmin < R⊙), particles must
have values of the Tisserand parameter less than 2.05 when
they interact with the planet (Eq. 3). Only particles from
an evolved Oort cloud might have sufficiently low values
of Tisserand parameter without interacting with further
planets. Therefore, using repetition of the technique de-

scribed in §4.1, if particles originate in an outer belt with
T1 > 2.97, then at least 4 planets are required to scatter par-
ticles onto star-grazing orbits, whilst for 2.89 < T1 < 2.97
only 3 are required. Another potential hindrance is the in-
stability of many planetary systems after stellar mass loss
on the giant branches (Debes & Sigurdsson 2002), if, for
example, planets are ejected. Examples of real planetary
systems that could scatter particles onto star-grazing or-
bits from a Kuiper-like belt include our Solar System (if
TNep < 2.96) and HR 8799 with planets at 14.5, 24, 38 and
68 AU (Marois et al. 2008, 2010), if T1 < 2.95 in the outer
belt.

This analysis crucially shows that it is possible to scat-
ter comets or asteroids onto star-grazing orbits and places
limits on the architecture of a planetary system that can do
this, but it does not inform us about the probability of a
given planetary system to scatter planetesimals onto star-
grazing orbits. Oort cloud analogues only require a single
planet to scatter material onto star-grazing orbits, whilst
constraints are placed on the orbits of planets and the initial
value of the Tisserand parameter required to scatter mate-
rial inwards from a Kuiper or asteroid belt analogues. Thus,
this analysis shows that material from an evolved Kuiper
belt is a potential origin of the metal pollution in white
dwarfs, although fewer constraints exist on the ability of
an evolved Oort cloud to scatter comets onto star-grazing
orbits. This provides important evidence in support of the
planetary origin for the white dwarf observations.

7 DISCUSSION OF LIMITATIONS

The purpose of this work is to present a simple analytical
tool that can be applied to many planetary systems. It de-
termines the potential orbital parameters of scattered par-
ticles, based on the initial value of the Tisserand parameter
and the planets’ orbits. It does not claim to determine the
probability for any particle to be scattered onto a given or-
bit, nor the expected distribution of scattered particles. In
order to retain this simplicity it was necessary to make sev-
eral assumptions that strictly limit the applicability of this
analysis. These are discussed below.

We anticipate that the behaviour described in this work
will be useful in interpreting N-body simulations of small
body scattering in planetary systems. In such simulations
the initial value of the Tisserand parameter for individual
particles will be well constrained, and this means that it
should be possible to describe their subsequent evolution us-
ing the analysis presented here. However, this presupposes
that our simplifying assumptions are valid, and it will be
important to use N-body simulations to test this. The main
assumptions regarding the dynamics that we see are sum-
marised here.

One of the biggest limitations in the analysis presented
here, is the dependence on the initial value of the Tisserand
parameter in the outer belt. This is in general an unknown
quantity, although good approximations can be made to its
value, as discussed in §2 and its value is determined in N-
body simulations.

Here, the scattering of particles by a chain of planets is
considered as a series of three-body problems. This should
be broadly true, although some particles may be affected by
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Figure 9. The extension of the orbital parameter space available
to scattered particles with Tp = 2.98. This is analogous to the
plots in the top row of Fig. 1, except that the particles are allowed
to interact with the planet within a zone of size ∆ ∼ RH , for a
Jupiter mass (green) and Neptune mass (red) planet. For the
Neptune mass planet the orbital parameter space available to
scattered particles is not altered significantly from that shown in
Fig. 1, whereas for the Jupiter mass planet the strict limit on the
minimum pericentre is removed.

secular or resonant perturbations, or interact with a planet
other than the one dominating their dynamics during that
period. This could alter the value of the Tisserand param-
eter. Particles may also be passed backwards and forwards
along the chain of planets, as discussed in §4.4.

Another very important limiting assumption is that
particles only interact with the planet when their orbits ex-
actly cross the planet’s orbit, whereas in reality there will be
a small zone around the planet within which a particle may
be scattered by the planet. The size of such a zone depends
on the planet’s mass and therefore its inclusion into the cal-
culations would introduce a mass dependence to the analysis
presented here. For the low mass planets all of the analysis
presented here should be valid, whilst for higher mass plan-
ets care must be taken when rigorously applying some of the
derived limits. This is illustrated in Fig. 9, which shows the
extension to the orbital parameter space for particles that
can interact with the planet in a zone of size ∆

ap
. This ex-

tends the range of potential orbital parameters of scattered
particles, as orbits with Q > ap(1 −∆) and q < ap(1 + ∆)
can interact with the planet, rather than just Q > ap and
q < ap. This orbital parameter space is shown in Fig. 9 for
Jupiter and Neptune, with ∆ = RH and Tp = 2.98. Jupiter
is massive enough that there is no longer a limit on the min-
imum pericentre to which particles can be scattered and the
available parameter space is increased by a small, but sig-
nificant, amount. Neptune, on the other hand, does not sig-
nificantly extend the parameter space available to scattered
particles and therefore all of the analysis presented in this
paper will apply. For Jupiter mass planets the broad results
presented here can still be applied, however, care should be
taken when rigorously applying the derived limits.

Strictly the conservation of the Tisserand parameter,
and therefore this analysis, should only be applied to sys-
tems with co-planar planets on circular orbits, i.e. within

the context of the circular restricted three body problem.
It is, however, found that even when these assumptions are
relaxed, the analysis still applies approximately, for exam-
ple Murray & Dermott (1999) found only a small change in
the Tisserand parameter when they consider Jupiter’s eccen-
tricity. Caution should, however, be exerted when applying
this analysis to some of the detected exoplanets with large
eccentricities (and relative inclinations).

8 CONCLUSIONS

The purpose of this work was to describes simply and an-
alytically the scattering of particles in any planetary sys-
tem. This analysis constrains the outcomes of scattering
events, based on the conservation of the Tisserand param-
eter (Eq. 1), in a manner that is very useful for analysing
the structure of many planetary systems where the scatter-
ing of small bodies by planets is important. This analysis
can be used to better understand behaviour seen in N-body
simulations.

We consider here the application to planetary systems
where small bodies are scattered from an outer belt by inte-
rior planets. The analysis could, however, easily be reformu-
lated to consider scattering by planets exterior to the belt.
We assume that the scattering process can be approximated
by a series of three-body problems, during each of which the
Tisserand parameter with respect to the relevant planet is
conserved. This constrains the possible orbits of scattered
particles, based solely on the initial value of the Tisserand
parameter and the orbits of the planets, with the assumption
that particles are passed directly along the chain of planets
and that particles only interact with the planet when their
orbits directly cross the planet’s orbit. In this case there is
no dependence on the planet’s mass and it is only the ratio of
the planets’ semi-major axes that are important. A depen-
dence on planet mass would be introduced if the interactions
of particles with the planet within a zone around the planet
were included. This analysis places an important limit on
how far in particles can be scattered (qmin from Eq. 3) and
determines which planets the particles can interact with,
which can eject them and the potential height of the disc,
based on the maximum particle inclinations (Eq. 17). We
consider the full range of possible orbits of scattered parti-
cles, rather than their distribution.

In this work we consider the application of this analy-
sis to our Solar System, main sequence stars with both cold
and warm dust belts and metal polluted white dwarfs. In
the Solar System, this analysis describes the scattering of
Kuiper belt objects by Neptune to become Centaurs and
Jupiter Family comets, as well as asteroids by Mars and the
terrestial planets. We show that the Solar System planets
are close to optimally separated for scattering particles be-
tween them. One explanation for main sequence stars with
warm dust belts that cannot have survived for the age of
the system in their current positions is that material was
scattered inwards from an outer belt. If this is the case, this
analysis shows that certain architectures for the planetary
system could not produce the observations. Given the strong
dependence of the scattering process on planetary system ar-
chitecture, we speculate that the diversity of such systems is
a reflection of the variety of planetary system architectures.
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Observations of metal polluted white dwarfs and white
dwarfs with circumstellar discs have been associated with
material scattered inwards from an outer evolved planetary
system. Such material can be scattered sufficiently close to
the star from all Oort cloud analogues and, given certain
constraints on the system architecture, from some Kuiper
belt analogues. This strengthens the case for a planetary
origin to these observations, although this analysis does not
comment on the probability for particles to be scattered onto
such orbits.

In summary, the analytical tool presented here can aid
our understanding and place useful constraints on the scat-
tering of small bodies in a wide range of planetary systems.
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ApJ, 596, 477


	1 Introduction
	2 Scattering of planetesimals 
	3 Scattering by a Single planet
	3.1 Orbital constraints
	3.2 Minimum pericentre
	3.3 Ejection

	4 Scattering by two planets
	4.1 Orbital constraints
	4.2 Constraints on which particles interact with the inner planet
	4.3 Minimum pericentre
	4.4 Further scattering

	5 Multi-planet systems
	5.1 A hypothetical 5-planet system with constant ratio of planets' semi-major axes
	5.2 Hypothetical multi-planet system separated by 10RH

	6 Applications to real systems
	6.1 Solar System
	6.2 Warm dust discs
	6.3 Metal polluted white dwarfs and white dwarfs with close-in circumstellar discs 

	7 Discussion of limitations
	8 Conclusions
	9 Acknowledgements

